Skip to main content

Simulations, Data Analysis and Algorithms

Table 3 Post-impact parameters. In this work we consider the following subset of post-impact parameters, focusing on the LR, SLR, and debris field. These parameters were chosen for their relevance to N-body studies of terrestrial planet formation. Detailed definitions of the post-impact parameters and how they are evaluated can be found in Appendix A

From: Machine learning applied to simulations of collisions between rotating, differentiated planets

Parameter Constraints Unit Description
ξ −10–1 Accretion efficiency
\(M_{\mathrm{LR}}\) 0–\(M_{\mathrm{tot}}\) \(\mathrm{M}_{\oplus }\) Mass
\(M^{\mathrm{norm}}_{\mathrm{LR}}\) 0–1 \(\mathrm{M}_{\mathrm{tot}}\) Normalized mass
\(R_{\mathrm{LR}}\) >0 \(\mathrm{R}_{\oplus }\) Radius
\(F^{\mathrm{core}}_{\mathrm{LR}}\) 0–1 Core mass fraction
\(\Omega _{\mathrm{LR}}\) >0 Hz Rotation rate
\(\theta _{\mathrm{LR}}\) 0 − 180 deg Obliquity
\(J_{\mathrm{LR}}\) 0–\(J_{\mathrm{tot}}\) Js Angular momentum
\(F^{\mathrm{melt}}_{\mathrm{LR}}\) 0–1 Melt fraction
\(\delta ^{\mathrm{mix}}_{\mathrm{LR}}\) 0–0.5 Mixing ratio
\(M_{\mathrm{SLR}}\) 0–\(M_{\mathrm{tot}}\) \(\mathrm{M}_{\oplus }\) Mass
\(M^{\mathrm{norm}}_{\mathrm{SLR}}\) 0–0.5 \(\mathrm{M}_{\mathrm{tot}}\) Normalized mass
\(R_{\mathrm{SLR}}\) >0 \(\mathrm{R}_{\oplus }\) Radius
\(F^{\mathrm{core}}_{\mathrm{SLR}}\) 0–1 Core mass fraction
\(\Omega _{\mathrm{SLR}}\) >0 Hz Rotation rate
\(\theta _{\mathrm{SLR}}\) 0–180 deg Obliquity
\(J_{\mathrm{SLR}}\) 0–\(J_{\mathrm{tot}}\) Js Angular momentum
\(F^{\mathrm{melt}}_{\mathrm{SLR}}\) 0–1 Melt fraction
\(\delta ^{\mathrm{mix}}_{\mathrm{SLR}}\) 0–0.5 Mixing ratio
\(M_{\mathrm{deb}}\) 0–\(M_{\mathrm{tot}}\) \(\mathrm{M}_{\oplus }\) Mass
\(M^{\mathrm{norm}}_{\mathrm{deb}}\) 0–1 \(\mathrm{M}_{\mathrm{tot}}\) Normalized mass
\(F^{\mathrm{Fe}}_{\mathrm{deb}}\) 0–1 Iron mass fraction
\(J_{\mathrm{deb}}\) 0–\(J_{\mathrm{tot}}\) Js Angular momentum
\(\delta ^{\mathrm{mix}}_{\mathrm{deb}}\) 0–0.5 Mixing ratio
\(\bar{\theta }_{\mathrm{deb}}\) −90–90 deg Mean altitude
\(\theta ^{\mathrm{stdev}}_{\mathrm{deb}}\) >0 deg Stddev altitude
\(\bar{\phi }_{\mathrm{deb}}\) 0–360 deg Mean azimuth
\(\phi ^{\mathrm{stdev}}_{\mathrm{deb}}\) >0 deg Stddev azimuth