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Abstract
We propose a modification for the tensor of artificial viscosity employable for generally comoving, curvilinear grids.
We present a strong conservation form for the equations of radiation hydrodynamics for studying nonlinear
pulsations of stars. However, the modification we propose is of general mathematical nature. We study a differential
geometrically consistent artificial viscosity analytically and visualize a comparison of our approach to previous
implementations by applying it to a simple self-similar velocity field which has a direct application in stars as the
fundamental mode of pulsation is radial. We first give a general introduction to artificial viscosity and motivate its
application in numerical computations. We then show how a tensor of artificial viscosity has to be designed when
going beyond common static Eulerian or Lagrangian comoving rectangular grids. We derive and state the modified
equations which include metrical terms that adjust the isotropic (pressure) part of the tensor of artificial viscosity.

1 Background
In astrophysics a multitude of systems and configurations
are described with concepts from hydrodynamics, often
combined with gravitation, radiation and/or magnetism.
Mathematically radiation hydrodynamics (RHD) andmag-
netohydrodynamics (MHD) are described by systems of
coupled nonlinear partial differential equations. The Eu-
ler equations of hydrodynamics, the Maxwell equations as
well as radiative transport equations are hyperbolic PDEs
that connect certain densities and fluxes via conservation
laws. The numerical solutions of these equations essen-
tially need to comprise this quality. Today there exists a
wide range of numerical schemes for conservation laws
that ensure the conservation of mass, momentum, energy
etc. if applied properly.Multiple fields in physics and astro-
physics have adopted these sophisticated numerical meth-
ods for studying various applications.
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Standard numerical methods for partial differential
equations are established under the assumption of clas-
sical differentiability. Routine finite difference schemes
of first order usually smear or smoothen the solution in
the vicinity of discontinuities as they come with intrin-
sic numerical viscosity. Standard second-order methods
often suffer from the Gibbs phenomenon, where oscilla-
tions around shocks emerge. In the past decades so-called
high-resolution methods have been developed in order
to achieve proper accuracy and resolution for nonlinear,
discontinuous problems as they appear also in RHD or
MHD. High order explicit Gudonov schemes have been
dominating numerical applications and literature for the
past decades. This trend was amplified by the enormous
advancements made in parallel computing over the past
decades.
In this work we consider physical configurations and

problems that demand implicit advection schemes due to
stability requirements. The parallelization of implicit non-
linear advection schemes, however, is still merely partially
possible (solvers such as GMRES (Griewank and Walther
) solve the linear sub-problems in parallel but itera-
tively in a sequential fashion for each time step). Hence it
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Figure 1 Example of a non-conformal non-steady 2D grid with oblateness governed by three choices of parameters (a1,a2,a3) as defined
in equation (1). (a) corresponds to (a1,a2,a3) : (1, 0, 0), (b): (0.8, 0, 0), (c): (0.8, 0, 0.5) and (c): (0.8, 0.2, 0.5).

is desired tominimize the number of grid cells particularly
for implicit schemes, where usually the inversion of a non-
linear matrix consumes a major part of the computational
power needed. We suggest the adoption of problem ori-
ented grids in combination with a modified artificial vis-
cosity (which we will motivate in Section .) for curvilin-
ear coordinates. In higher-dimensional problems this ar-
tificial viscosity emerges as a tensorial quantity, which we
demonstrate in Section .. The result present in this pa-
per can be seen as a tensor analytical consequence of the
artificial viscosity in general curvilinear coordinates when
using consistent metric tensors. In Section  we propose a
correction for the commonly used tensor of artificial vis-
cosity for curvilinear grids.
This correction is motivated by astrophysical applica-

tions where we consider time-dependent comoving non-
linear coordinates represented by non-conformal (non-
angle preserving) maps from spherical coordinates. The
authors are currently investigating the generation of grids
that are asymptotically spherical but which allow certain
asymmetries that can be found in rotating configurations
as well as nonlinear pulsation processes in stars. This

new approach to grid-based astrophysical simulation tech-
niques will be addressed extensively with numerical appli-
cations in a future paper.
As an example of non-conformal two-dimensional coor-

dinates, Figure  shows a grid that corresponds to the map
(x, y) → (ξ ,η),

x = ξ cosη,

y =
(
aξ + aξ )

(
 +

aπ – aξ + aaπξ

π ( + aξ )
η

+
aξ – aπ – aaπξ

π( + bξ )
η + aη

)
sinη

()

which yields standard orthogonal polar coordinates for
the choice of parameters (a,a,a) = (, , ). In such a
nonorthogonal grid themetric tensor is no longer diagonal
and one has to consider a consistent differential geometric
approach to the formulation of the governing equations
of RHD and MHD, and also to the mathematical formu-
lation of the artificial viscosity, which will be stressed in
Section .
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The benefit of the consistent formulation is especially
evident when considering time-dependent grids, e.g. when
using time-dependent parameters (a,a,a) in (). We re-
fer to the Appendix for a depiction of the system of equa-
tions of RHD for generally comoving curvilinear coordi-
nates with time-dependent metrics.

1.1 Brief introduction to conservation laws
For the sake of stringency we recapitulate some important
results from the theory and numerics of conservation laws
and thereby introduce a few mathematical terms needed
to motivate artificial viscosity. We refer to LeVeque ()
and Richtmyer and Morton () for the complete pic-
ture.
The equations of RHD and MHD form a system of hy-

perbolic conservation laws that describe the interaction
of a density function d(x, t) : Rn × [,∞) → R

m and its
flux f(d) :Rm →R

m×n. Equation () shows how a concrete
choice for the density and the flux field can look like in a
given coordinate system.
The temporal change of the integrated density in a con-

nected set � ⊂ R
n then equals the flux over the boundary

∂�, i.e.,

∂t

∫

�

ddV +
∫

∂�

f · ndS =  for all t > , ()

where n is the outward oriented normal of the surface.
The system is called hyperbolic if the Jacobian matrix

∇df associated with the fluxes has real eigenvalues and
if there exists a complete set of eigenvectors. In case of
MHD and RHD this property has a direct physical rele-
vance (Pons et al. ).
Assuming f to be a continuously differentiable function,

equation () can be rewritten via the divergence theorem
as

∫

t

∫

�

(
∂td + divx f(d)

)
dV dt

=  for all t > ,� ⊂R
n, ()

which gives a system of partial differential equations for
the density function d:

∂td + divx f(d) =  for all t > ,x ∈R
n. ()

With an initial condition d(x, ) = d(x), x ∈ R
n, this is

called the Cauchy problem.
In order to illustrate the connection of hydrodynami-

cal applications to this formalism, we express the Euler
equations in the form (). The appearing variables are the
gaseous density ρ(x, t), the gas velocity u(x, t), the inner
energy ε(x, t) and the gaseous pressure tensor P(x, t). Con-
sidering the differential form (), we recognize the con-
tinuity equation, the equation of motion and the energy

equation as the components of the hyperbolic problem. In
case of themost relevant problem, that of Dhydrodynam-
ics, the density and its flux are given as

d =

⎛

⎝
ρ

ρu
ρε

⎞

⎠ ∈ R
, f(d) =

⎛

⎝
ρuT

ρuuT + P
ρεu + (Pu)T

⎞

⎠ ∈R
×. ()

For a given coordinate system with base vectors ei, the
tensorial fields are given explicitly as (using the Einstein
notation)

d =

⎛

⎝
ρ

ρuiei
ρε

⎞

⎠ , f(d) =

⎛

⎜
⎝

ρuieTi
(ρuiuj + Pij)eieTj
(ρεui + Pi

juj)eTi

⎞

⎟
⎠ . ()

The gaseous pressure tensor can be assumed to be isotro-
pic in most applications, which means that P = gijp where
p(x, t) is the scalar gas pressure and gij = eiTej the con-
travariant metric tensor. In case of adaptive grids the base
vectors are time-dependent as well, i.e., ei = ei(x, t).
Since even the simplest one-dimensional scalar conser-

vation laws like the Burgers’ equation have classical solu-
tions only in some special cases, one has to broaden the
considered function space of possible solutions. For the so-
called weak solutions, we appeal to generalized functions
where the discontinuities are defined properly. The gener-
alized concept of differentiation of distributions shifts the
operations to test functions γ :Rn×R

+ ⊃G →R (G open)
which are infinitely differentiable and have a compact sup-
port (meaning that for each γ there exists a closed and
bounded subset K such that γ (x, t) =  for all x ∈ G \ K ).
We denote this space of test functions byD(G). In this gen-
eralized space of solutions the Cauchy problem () is writ-
ten as

∫

t≥

∫

Rn

(
∂td + divx f(u)

)
γ dV dt =  for all γ ∈D(G).

The weak formulation of the conservation law () is ob-
tained by shifting the derivatives to the test functions by
partial integration, and by using the compactness of the
support. We get that the following has to hold for each
γ ∈D(G):

∫

t≥

∫

Rn

(
d∂tγ + f(d)∇xγ

)
dV dt

= –
∫

Rn
γ (x, )d(x) dV . ()

The function d ∈ L∞ is called a weak solution of the PDE
(), if it satisfies () and d ∈ U with d ∈ L∞. However,
there is a small drawback. This weak solution is not nec-
essarily unique and usually further constraints have to be
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imposed in order to guarantee its uniqueness. This leads
us to the actual topic of this paper.

1.2 Introduction to artificial viscosity
For most physical problems it is sufficient to look for weak
solutions from the function space of piecewise continu-
ously differentiable functions. Constraining the space of
solutions in this way, we call the physical variables d weak
solutions of theCauchy problem (), if they are classical so-
lutions wherever they are continuously differentiable, and
if at discontinuities (shocks) they satisfy additional condi-
tions in order to be physically reasonable (we elaborate on
these conditions below).
The mathematical theory provides several techniques to

distinguish physically valuable solutions out of a manifold
of mathematically possible. One method is to add an arti-
ficial viscosity term to the right-hand side of (), to get the
equation:

∂td + divx f(d) = εν�d, ε >  ()

and then consider the limiting case ε → . This idea ismo-
tivated by physical diffusion which broadens sincere dis-
continuities to differentiable steep gradients at the (micro-
scopic) length scale of the mean free path of the particles.
The physical solution of the weakly formulated problem
is thus the zero diffusion limit of the diffusive problem.
However, in practice this limit is difficult to calculate an-
alytically and hence simpler conditions have to be found.
A common technique to do this ismotivated by continuum
physics as well. Here an additional conservation law is set
to hold for another quantity - the entropy of the fluid flow
- as long as the solution remains smooth. Moreover, it is
known that along admissible shocks this physical variable
never decreases, and the conservation law for the entropy
can be formulated as an inequality.
We denote the (scalar valued) entropy function by σ (d)

and the entropy flux function by φ(d), and they satisfy

∂tσ (d) + divx φ(d) = . ()

Assuming the functions to be differentiable, we may re-
write this conservation law via the chain rule and the equa-
tion () as

∇dσ (d)divx f(d) = divx φ(d), ()

where in higher-dimensional case the appearing matri-
ces of gradients have to fulfill further constraints, see e.g.
Godlewski and Raviart (). For scalar equations, it is al-
ways possible to find an entropy function of this kind. Fur-
thermore it is assumed that the entropy function is convex,
i.e.

∇
dσ > , for all d ∈U . ()

To get our actual entropy condition, we first rewrite our
entropical conservation law () in the viscous form

∂tσ (d) + divx φ(d) = ε∇dσ (d)�d. ()

Integrating over an arbitrary time interval [t, t] and a
connected set � ⊂ R

n, and using partial integration, we
find that

∫ t

t

∫

�

(
∂tσ (d) + divx φ(d)

)
dV dt

= ε

∫ t

t

∫

∂�

(∇xd∇dσ (d)
) · ndSdt

– ε

∫ t

t

∫

�

∇x,id∇σ (d)∇x,iddV dt, ∇σ (d) > .

()

When we now consider the non-diffusive limit ε → , the
first term on the right-hand side vanishes without further
restriction whereas the second term has to remain non-
positive. Then, using partial integration and the divergence
theorem we obtain the entropy condition

∫

�

σ
(
d(x, t)

)
dV ≤

∫

�

σ
(
d(x, t)

)
dV

–
∫ t

t

∫

∂�

φ(d) · ndSdt. ()

For bounded, continuous pointwise solutions d∗ of ()
such that d∗ → d for ε → , the vanishing viscosity solu-
tion d is a weak solution of the initial value problem () and
fulfills entropy condition (). Generally spoken, applying
the entropy condition to systems with shock solutions un-
veils those propagation velocities that ensure that no char-
acteristics rise from discontinuities which would be non-
physical. For detailedmotivation, stringent argumentation
and proofs to mathematical techniques presented in this
section we refer toHarten et al. () and LeVeque ().

1.3 Numerical artificial viscosity
Asmentioned we are looking for high-resolution methods
for nonlinear PDEs derived from hyperbolic conservation
laws. In the past decades major efforts have been made
in developing numerical methods for these problems that
are at least of second order. One patent attempt to finding
such a high-resolution method is to adapt a well-known
high-ordermethod for linear problems for nonlinear prob-
lems (such as the Lax-Wendroff scheme (Lax and Wen-
droff )).
As illustrated above we can add an artificial viscosity

term to the conservation law in a way that the entropy
condition is satisfied and non-physical solutions are ex-
cluded. The viscosity term has to be designed in such a
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manner that it affects sincere discontinuities but vanishes
sufficiently elsewhere so that the order of accuracy can be
maintained in those regimes where the solution is smooth.
The idea of numerical artificial viscosity was inspired by
physical dissipationmechanisms and dates backmore than
half a century to von Neumann and Richtmyer ().
We denote as customary the approximate solution of

the exact density d(x, t) at discrete grid points d(xj, tn) by
Dn

j , and set D = [D · · · Dk]T, where k is the total num-
ber of grid points. The numerical representation of the
flux function f(d) is denoted respectively by F(D), where
[F(D)]j = f(Dj). The numerical flux function gets modified
by a an artificial viscosityQ[D]j for instance in the follow-
ing way:

[
Fvisc(D)

]
j =

[
F(D)

]
j – h

[
Q(D)

]
j(Dj+ –Dj), ()

where h denotes the resolution of the spatial discretiza-
tion, h = xj+ –xj. Since the original design of the additional
viscous pressure in the scalar form, Q = cρ(�u), c ∈ R,
as suggested in von Neumann and Richtmyer () for
one-dimensional advection ∂td + a∂xd = Q∂xxd, it has un-
dergone a number of modifications and generalizations. It
has turned out to be numerically preferable to add a linear
term (see Landshoff ()) in order to control oscillations.
Generalizations to multi-dimensional flows mostly retain
the original analogy to physical dissipation and reformu-
late the velocity term accordingly, see e.g. Wilkins ().
The artificial viscosity broadens shocks to steep gradi-

ents at some characteristic length scale, but should not
cause too large smearing. The concrete composition and
implementation of this artificial viscosity coefficientQ de-
pends on the application. As an example we discuss the
following form of the tensor of the artificial viscosity in
higher-dimensional RHD numerics. Similar forms of arti-
ficial viscosity can be found also in pure hydrodynamics
and MHD calculations in D and D.
Tscharnuter andWinkler () pointed out that the vis-

cous pressure in D radiation hydrodynamics has to un-
ravel the normal stress, quantified by the divergence of the
velocity field and the shear stress, which is expressed by the
symmetrized gradient of the velocity field according to the
general theory of viscosity. It is designed to switch on only
in case of compression (divx u < ), and this is all ensured
by the form

Q = –ql

viscρ max(–divx u, )

(
[∇u]s –



edivx u

)
,

()

where the symmetrization rule is defined componentwise
for the lower indices as

(
[∇u]s

)
ij =



(∇iuj +∇jui).

2 Numerical artificial viscosity in curvilinear
coordinates

We introduced artificial viscosity in form of a three dimen-
sional viscous pressure tensor () in Section . along the
lines of Tscharnuter andWinkler (). In this section we
want to point out, how such a definition must be adapted
for curvilinear coordinates in order to ensure tensor ana-
lytical consistency.
When formulating PDEs derived from hyperbolic con-

servation laws on a curvilinear grid, the tensorial equations
() have to be transformed to the according coordinate sys-
tem. Not only the vectorial and tensorial quantities have
to be transformed but also the differentiation operators,
in particular the divergence operator in our case. The ap-
propriate framework to do this is provided by differential
geometry. Like the gradient of a scalar is natively a covec-
tor, there are rules for co- and contravariant indices of ten-
sors such as the one we are interested in. The crucial term
in () is the symmetrized velocity gradient [∇u]s that ac-
counts for shear stresses, and one sees that the form ()
comes into conflict with the demand of vanishing trace
(TrQ = ) when the divergence term is simply of the form
edivx u, as we find it commonly in several MHD and RHD
grid codes.

Proposition The correct form of the viscous pressure ten-
sor () in general coordinates is

Q = –ql

viscρ max(–divx u, )

(
[∇u]s –



gdivx u

)
,

()

where g is the fundamentalmetric tensor.We show that this
tensor has the desired properties. The viscous pressure ten-
sormust be symmetric by definition, i.e.Qij =Qji,which can
be easily verified from (). Also, the trace of the tensor has
to vanish (TrQ = Qi

i = ), as pointed out in von Neumann
and Richtmyer (). To show that this holds for (), we
first consider its native covariant components

Qij = –μ max(–divx u, )

×
(


(∇iuj +∇jui) –



gij divx u

)
, ()

wherewe have renamed qlviscρ = μ.Next,we need to raise
an index with the metric,

Qi
j =Qljgli

= –μ max(–divx u, )

×
(


gli(∇luj +∇jul) –



δij divx u

)
,
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and use the essential identity gliglj = gij = δij . The Ricci
lemma ∇igjk = ∂igjk – �l

ijglk – �l
ikgjl =  for the fundamen-

tal tensor naturally also holds for the contravariant compo-
nents and we can permute g into the derivatives∇lgliuj and
∇jgliul which yields two times the divergence ∇iui = divx u
when we conduct the contraction j → i.We use the summa-
tion δii =  and obtain the desired result

Qi
i = · · · =

(


(divx u) –



divx u

)
= .

The commonly used (see e.g. Dorfi () in RHD,
Iwakami et al. () in MHD, Fryxell et al. () in
MHD) form ofQ () is not compatible with these require-
ments since the symmetrization is only defined for lower
indices, whereas the unit tensor e of a metric space is only
defined for mixed indices, meaning there is no such thing
as δij. However, the above mentioned and other authors
have neglected this inconsistency since they have con-
sidered mixed indices from the start when concentrating
on Cartesian or affine coordinates. Nonlinear corrections
have been suggested in Benson and Schoenfeld () al-
beit this approach does not explicitly concern curvilinear
coordinates and is based on a TVD approach.
In several hydro- and MHD-codes that include non-

Cartesian grids such as Pluto (Mignone et al. ), the
geometric source terms are coded explicitly for several ge-
ometries (polar, cylindrical, spherical), and not only for the
artificial viscosity flux. The suggestions made e.g. in Vi-
nokur () lead to geometrical source terms that cor-
rect curvilinear grid effects. However the strong conserva-
tion form as elaborated in Warsi () would need to ap-
peal to our differential geometrically consistent approach
in order to deal with the viscosity in an intrinsically con-
sistent way. Especially when the metric tensor itself is not
only a function of space but also time-dependent (as dis-
cussed in Section ), the latter approach reaches its limits.
Our correction affects curvilinear coordinates in multiple
dimensions, whereas it is not necessary that the coordi-
nates are orthogonal, i.e., the metric tensor does not need
to be diagonal. Our initial motivation to study more gen-
eral coordinates comes from the idea to generate problem-
oriented coordinate systems for astrophysical numerical
calculations. In a following paper we want to present some
feasible approaches to grid generation under certain phys-
ical restrictions. Such nonlinear grids that are adaptive in
multiple dimensions have time-dependent metric tensors
and thus benefit directly from our consistent definition.
On the contrast, when using adaptive mesh refinement,
the metric tensor remains geometrically constant in time.
In order to support the theoretical results in this work,

in the upcoming section we study as an example a simple
velocity field with a non-vanishing divergence and visual-
ize the according artificial viscosities for the two presented
cases.

3 Application and visualization
The most common application of curvilinear coordinates
in D is the map (x, y, z) → (r ∈ R

+,ϑ ∈ [,π ],ϕ ∈ [, π ])
with x = r sinϑ cosϕ, y = r sinϑ sinϕ and z = r cosϑ as
spherical coordinates. The corresponding diagonal covari-
ant metric tensor in this simple orthogonal case is given by
diag(, r, r sinϑ).

3.1 Toy model velocity field
As the presented considerations for artificial viscosity on
non-steady curvilinear coordinates stem from astrophysi-
cal applications, we want to exemplarily address a veloc-
ity field with a certain practice in RHD. We study a toy
model of a self-similar fluid flow solution, namely the ve-
locity field given by

uEx =
x

√
x + y + z

=
x
r

()

here in Cartesian coordinates. Such self-similar solutions
appear in idealized spherical models of stars, for example
as shocks driven by radial stellar pulsations.
This vector field is obviously symmetric with respect to

the origin and has a non-vanishing divergence divx uEx =
/r. The covariant components of this vector field are given
in any other coordinates by scalar product with the base
vectors, i.e. uEx,i = uEx · ei. This leads to the covariant com-
ponents (, , ) in spherical coordinates. The nonzero co-
variant components of the tensorial part ([∇u]s– 

edivx u)
of the artificial viscosity () are given for this field by

Qrr = –

r

, Qθθ =
r

, Qφφ =

r sin θ


. ()

In the following section we visualize the tensor of artificial
viscosity (TAV) for the velocity field (). A uniform distri-
bution of the leading eigenvalues over the whole domain is
expected due to the symmetry of the vector field.
One easily verifies the identity Qi

i =  summing over the
mixed components Qr

r = –/r, Qθ
θ = /r, Qφ

φ = /r.
With the previous version of the TAV from Tscharnuter

and Winkler () we would get the following covariant
components of the artificial viscosity tensor:

Qrr = –

r

, Qθθ = –

r

+ r,

Qφφ = –

r

+ r sin θ .
()

The visualization of this non-metric version of the artifi-
cial viscosity for the symmetric velocity field () shows
obviously a field unequal in strength and direction over
the whole domain. In numerical computations this would
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Figure 2 Major eigenvalue the incorrect (a) and correct (b) viscosity, shown along the XZ plane.

Figure 3 Trace the incorrect (a) and correct (b) viscosity, shown along the XZ plane. Note the range of values in Figure 3(b) - what we see is
just numerical noise, the trace is perfectly zero within numerical precision.

clearly lead to artificial anisotropies in the flux of the den-
sity field and destroy all efforts in constructing a higher-
order conservative numerical scheme with artificial vis-
cosity.

3.2 Visualization of scalar and tensor fields
We can see the incorrect vs. correct behavior immediately
by even just displaying the major eigenvalue or the trace of
the viscosity tensor. However, since the major eigenvalue
represents only one degree of freedom out of the six avail-
able in the tensor field, a measure involving all six compo-
nents is a more objective metric for validation.
We used the Vish Visualization Shell (Benger et al. )

to numerically sample () and () on a uniform grid for
analyzing scalar fields (Figures  and ) and a radial sam-
pling distribution (Figure ) for the full tensor field.
Figure  displays a structure of the eigenvalue corre-

sponding to the major eigenvector of the TAV on the XZ
plane (i.e., in the plane y = ), evidently showing some
asymmetric coordinate-dependent behavior of the incor-

rect TAV, whereas the correct TAV is radially symmetric,
as desirable. The tensor field is symmetric and of rank two,
however it is not positive definite and may exhibit van-
ishing trace. The correct TAV is trace-free in the entire
domain, whereas the trace of the incorrect TAV ranges
through positive values (for large radial distances) to large
negative values close to the coordinate origin, as depicted
in Figure . A direct visualization method depicting the
full six degrees of freedom of the tensor field is thus favor-
able, or even rather essential. However, many direct visual-
ization methods for tensor fields require positive definite-
ness and are thus not applicable to this data. Only very few
methods are suitable for general tensors. Figure  shows
so-called Reynold glyphs (Moore et al. ) for the TAV
field. A Reynold glyph is the surface generated bymapping
a tangential vector v(P) at each data sample point P as

P →Q
(
v(P), v(P)

)
.
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Figure 4 Reynold glyphs (Moore et al. 1995) of the incorrect and correct viscosity tensor. The incorrect tensor shows a strongly negative
component, whereas the correct tensor is balanced, indicating zero trace.

Figure 5 Detailed Reynold glyphs (Moore et al. 1995) of the incorrect and correct viscosity tensor. Glyphs of the correct tensor show
spherical harmonics that are balanced in their positive and negative half-widths.

Such glyphs shown at each sampling point provide a di-
rect visualization of the full six degrees of freedom of the
tensor properties. Reynold glyphs are also able to depict
negative definite tensors, whereas a quadric surface (el-
lipsoids representing P → /

√
Q(v(P), v(P)) becomes hy-

perbolic for negative eigenvalues and problematic for vi-
sualization purposes. The Reynold glyph directly shows
the ‘directional value’ Q(v(P), v(P)) of the tensor field Q in
the direction v around a the sampling point P - the result-
ing surface is intersecting the sampling point P whenever
Q(v(P), v(P)) = , which is the case for points where the
tensor is degenerating and not positive definite. In such ar-
eas the glyph will visually appear like two intersecting sur-
faces corresponding to the isopotential surfaces of second
order spherical harmonic functions. These both surface
components represent positive and negative eigenvalues of
the tensor field - if both positive and negative component

‘counter-balance’ themselves they therefore indicate van-
ishing trace, which is the sum of the eigenvalues. If only
one surface component is visible, then the tensor is either
positive or negative definite on that certain point.
We used a radial sampling for the direct visualization

of the tensor field in order to minimize coordinate arti-
facts. As depicted in Figure (b) and Figure (b) for the
correct TAV all ‘modes’ are equivalently represented, indi-
cating vanishing trace of the tensor field while being ra-
dially aligned with the underlying coordinate system. In
contrast, the incorrect TAV, Figure (a) and Figure (a),
exhibits a dominantly negative trace.

4 Conclusions
We studied a generalization of the tensor of numerical
artificial viscosity for curvilinear coordinates and com-
pared our result to previous definitions found in litera-
ture. We analyzed a symmetric toy velocity field and visu-
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alized its viscosities. Clearly, the non-metric version of the
TAV as used by many authors of hydro- (HD) respectively
magneto-hydro- (MHD)or radiation hydrodynamic-codes
(RHD) leads to incorrect results in curvilinear coordinates,
whereas our suggestion for the numerical artificial viscos-
ity gives geometrically consistent results.

Appendix: Strong conservation form
Asmentioned in Section , the benefit of the strong formu-
lation of Cauchy problems arising from physical conserva-
tion laws will be discussed in more detail here.
Following the ideas of Warsi (), in non-steady coor-

dinates the geometrically consistent strong form of tenso-
rial conservation laws () is given as

∂t
(√|g|d)

+ ∂i
(√|g|f(d) · ei) = , ()

where d and f are decomposed according to their native
tensorial components. The scalar multiplication with the
ith contravariant base vectors ei yields a projection on the
contravariant coordinate lines which in case of general-
ized grids can differ in direction and length of their co-
variant counterparts. Equation () gives also the integral
form of the conservation law, which should be treated nu-
merically in a correct way for non-steady coordinates in
any finite-volume discretization. The important difference
to the componentwise structure ∇(·) = ∂(·) + �(·), where
Christoffel symbols account for the geometry is that in
this case undifferentiated terms arise (see Vinokur ())
which act like geometric sources in the equations and
destroy conservativeness. A comprehensive proof of Vi-
nokurs theorem using differential forms can be found in
Bridges ().
With non-steady curvilinear grids not only the nonlin-

earity of the metric tensor but also its time-dependence
has to be taken into account numerically. The motion of
the grid itself and its implications on the formulation of
the set of equations respectively the calculation of the oc-
curring fluxes is discussed in the following section.

A.1 Adaptive grids
In fluid dynamics we distinguish two main reference sys-
tems that suit unequally for various applications. The Eu-
lerian frame is the fixed reference system of an external
observer in which the fluid moves with velocity u whereas
the Lagrangian approach describes the physics in the rest
frame of the fluid. Between these two systems, the trans-
formation of an advection term for a density d (that moves
with a relative velocity u) is given via the material deriva-
tive Dtd = ∂td + u · ∇d.
Hence, when we work with comoving frames, the coor-

dinate system respectively the computational grid is time-
dependent. There is a number of purposes where strict

Eulerian or Lagrangian grids are suboptimal and thus we
need to consider the generalized the concept of the comov-
ing frames.
We next state the strong conservation form for time-

dependent general coordinate systems. The time deriva-
tive of a density d in the coordinate system �(β) relative
to a (e.g. static) coordinate system �(α) is given by ∂td(β) =
∂td(α) +∇(α)d∂tx(β) and from the view point of system �(α),
the time derivative is given as

∂td(α) = ∂td(β) – ẋ · ∇(α)dT, ()

where ẋ denotes the grid velocity. The second term on
the right side we call grid advection, see e.g. Warsi ()
and Thompson et al. (). An inhomogeneous advective
term of a conservation law K = dt + div(uTd) (in a fixed
coordinate system) is given in the case of moving grid as

K = dt – ẋ · ∇dT + div
(
uTd

)
. ()

When we apply the appropriate transformation prescrip-
tions to the spatial derivatives, we obtain the following
form

K = dt– ẋ · √|g|∂i
(√|g|eid)

+
√|g|∂i

(√|g|u ·eid)
. ()

This is not yet geometrically conservative, since it is not
of an integral structure. Following the idea of the Reynolds
transport theorem we consider the temporal derivative of
the volume, i.e., the determinant of the time-dependent
metric tensor

√|g(x, t)| in order to study the conservation
of a density function in variable volumes and obtain the
strong conservation form for time-dependent coordinate
systems:

√|g|K = ∂t
(√|g|d)

+ ∂i
(√|g|Uid

)
, ()

where Ui denotes the contravariant velocity components
relative to the moving grid,Ui = ei · (u– ẋ). For the full an-
alytic derivation we refer to Thompson et al. () again.

A.2 Set of RHD equations in strong conservation
form

We exhibit the system of equations of radiation hydro-
dynamics in a somewhat simplified formulation. The fol-
lowing system has been basis for a number of implicit
RHD computations (see e.g. Dorfi ()). All the astro-
physical assumptions, implications and simplifications can
be found in Mihalas and Mihalas (). In this paper
we only want to emphasize the structural form of such
a set of equations in a strong conservation form for co-
moving curvilinear coordinates. Note that for scalar equa-
tions the only effectively remaining geometric term inside

http://www.comp-astrophys-cosmol.com/content/1/1/2
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the derivatives is the volume element
√|g|. The vectorial

equations contain however also the time-dependent base
vectors.
The equations presented in the upcoming sections as

well as the coordinate transformation  were partially gen-
erated using the computer algebra systemMathematica
(Wolfram Research ). The source code can be down-
loaded at https://bitbucket.org/.

A.. Continuity equation
The strong conservation form of the continuity equation

∂tρ + div(ρu) = 

is given for time-dependent coordinates by

∂t
(√|g|ρ)

+ ∂i
(√|g|ei · (u – ẋ)ρ

)
= .

A.. Equation of motion
The equation of motion that we consider in radiation
hydrodynamics contains the conservation of moment of
plain fluid dynamics (), the radiative flux as a coupling
term (H, with the specific Rosseland opacity of the fluid
κR), gravitational force (G) and the artificial viscosity term
(Q from ()):

∂t(ρu) + div
(
ρuTu + P +Q

)
+ ρG –

π

c
κRρH = .

We inspect the elements of the energy stress tensor a little
closer before we give the consistent strong conservation
form.We define an effective tensor of gaseous momentum
R that accounts for the motion of the coordinates as

R = rijeiej = ρ(u – ẋ)uT.

The isotropic gas pressure tensor P is defined by the scalar
pressure and themetric tensor asP = pg. The viscous pres-
sure tensor Q has to be modified in the way we suggested
in (). Since inmost applications of RHDwith self-gravity
involved, the gravitational force G is determined by solv-
ing the Poisson equation for the potential �, we substitute
G = –∇�. The equation of motion in strong conservation
form is then written as

∂t
(√|g|ρu)

+ ∂i
(√|g|(R + P +Q) · ei)

+ ρ∂i
(√|g|�ei

)
–
π

c
κR

√|g|ρH = .

The kth component of the strong conservation equation
of motion is given by the kth Cartesian component of the
unit vector, e.g. in spherical coordinates er = cosϕ sinϑex+
sinϕ sinϑey +cosϑez and its derivatives. The projection of
each physical tensor on the contravariant coordinate lines

can be simplified by its contravariant components with re-
spect to its covariant basis without losing strong conser-
vation form, i.e. f · ei = f i,jej. We prefer this form with con-
travariant components since it meets the native design of
the stress tensorR and the pressure tensorP. The tensor of
artificial viscosity as given in () is brought to contravari-
ant form by the summation

Qij =Qlmgligmj = · · ·

=
(
gligmj(∇lum +∇jum) – gij




divu
)

and then the equation of motion is given by

∂t
(√|g|ρuiei

)
+ ∂i

(√|g|(rij + pij +Qij)ej
)

+ ρ∂i
(√|g|�ei

)
–
π

c
κR

√|g|ρHiei = . ()

A.. Equation of internal energy
The energy equation

∂t(ρε)+div(uρε)+P ·∇uT –πκPρ(J –S)+Q ·∇uT = 

accounts for the thermodynamics of the fluid, namely the
energy balance including kinetic and pressure parts as well
as inner energy. Latter is a thermodynamic quantity which
is associated with the equation of state. The specific inner
energy (ε) is in case of an ideal fluid its thermic energy. An-
other term comes from the energy exchange with the ra-
diation field ((J – S)-term) containing the specific Planck
opacity κP and viscous energy dissipation, expressed by
the contraction of the viscosity with the velocity gradient
Q · ∇uT.
Since we assume isotropic gas pressureP = pgwe can re-

formulate its contribution via the Ricci lemma and obtain
a very simple scalar expression

P · ∇uT = gijp∇iuj = p∇iui = pdivu.

The viscous energy dissipation is given by the contraction

Q · ∇uT =Qij∇iuj =Qij(∂iuj – �k
ijuk

)
=: Ediss,

and the strong conservative form of the energy equation is
then given by

∂t
(√|g|ρε

)
+ ∂i

(√|g|ρεei · (u – ẋ)
)
+

√|g|pdivu

– π
√|g|κPρ(J – S) +

√|g|Ediss = .

A.. Equation of radiation energy
We write a simplified frequency integrated radiation en-
ergy equation in the comoving frame as follows

∂tJ + div(uJ) + cdivH +K · ∇uT + cχP(J – S) = .
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For the scalar energy input of radiative pressure into the
material we define a new coupling variable

K · ∇uT = Kij∇iuj =: Pcoup

and in strong conservation form the equation of radiation
energy is given by

∂t
(√|g|J) + ∂i

(√|g|ei · (J(u – ẋ) + cH
))

+
√|g|Pcoup +

√|g|cχP(J – S) = .

A.. Radiative flux equation
Another vectorial conservation law, the radiative flux
equation, is given by

∂tH + div(uH) + cdivK +H · ∇uT + cχRH = .

We define an effective radiative flux tensor L analogously
to the effective tensor of gaseous momentum:

(u – ẋ)H =: L = lijeiej

and for the contribution of radiativemomentum to thema-
terial H · ∇uT we define another coupling variable F with
components

Fjcoup =Hi∇iuj.

The geometrically conservative form of the radiative flux
equation in non-steady coordinates is then written as

∂t
(√|g|H)

+ ∂i
(√|g|ei · (L + cK)

)

+
√|g|Fcoup +

√|g|κRρH = .
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