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Abstract

Background: The Roche lobe geometry is important to understand and study the properties of the mass-losing
component in a semi-detached binary system. However it is not easy to calculate accurately, and existing tables
usually do not include the parameters of the binary system under study, nor do they allow for non-synchronous
rotation.

Results: A calculator for properties of the Roche lobe is presented in two formats. An easy-to-use Java version has a
graphic interface, and a Fortran 90 version has a command line interface. The Fortran version allows for easy
modifications by the user. Both versions have two basic output options: one provides values of a set of various
quantities (such as the Lagrange points along the binary axis, and area and volume of the Roche lobe); the second
provides R(θ ,φ), the distance from the stellar center to the stellar surface for any specified polar angle. A single set of
input parameters can be entered directly or a large set of input parameters can be specified in a text file. The
calculator includes the options to have non-synchronous rotation of the star, or to have the star underfill its Roche
lobe. It can be used to calculate Roche lobe properties for the case of elliptical orbits, with some restrictions.

Conclusions: We present a convenient software tool for quickly and accurately calculating Roche lobe properties for
mass ratio in the range 0.01 to 100, for Roche lobe fill-out factor in the range 0.1 to 1.0, and for dimensionless
rotation rate of the star in the range 0.1 to 2.0. This will allow anyone working with a binary star system to obtain the
Roche lobe or stellar surface geometry for their system.
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1 Background
The Roche potential is the potential energy per unit test
mass which is orbiting the center-of-mass of a binary star
system at the same rate as the two stars. A circular orbit
is assumed for the binary system. The Roche potential in-
cludes both gravitational and centripetal energy, such that
its derivative gives the force (and thus acceleration) on the
test mass.

The Roche potential has many uses, including finding
the locations in the binary system where the acceleration
is zero- the Lagrange points L, L, L, L and L. In the
case of a binary star system where one of the stars (star )
increases its size, star  will reach a limiting surface. This
surface is called the Roche lobe, which is sketched in Fig-
ure . The Roche lobe is also defined by the surface that
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has the potential equal to the L potential. The Roche lobe
has the property that any material outside this surface is
unbound from star  and will be lost.

Many works have studied and calculated properties of
the Roche potential and the Roche lobe, starting with the
pioneering work of Kopal (). Plavec and Kratochvil
() present tables of distances for several points on the
equipotential surfaces which pass through the L and L
Lagrange points. This was done for a range of mass ra-
tios from . to .. Eggleton () calculated volumes, V ,
of the Roche lobe for a range of mass ratios to obtain the
equivalent volume radius Req (defined by V = πR

eq/). He
then presented a simple fitting formula for Req as a function
of q, accurate to better than %, which is often used and
now known as the Eggleton formula. Mochnacki ()
presented tables of potentials and positions of the L and
L Lagrange points as a function of mass ratio. He defined
a fill-out factor F in terms of the potential of an equipoten-
tial surface relative to the potential of the surfaces through
the L and L points. F was defined so that F <  corre-
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Figure 1 Roche lobe geometry. Illustration of the Roche lobe for star 1, with x, y, z axes and the various Roche radii (RL1, Rbk , Ry , Rz and Req).

sponds to surfaces inside the Roche lobe, and  < F < 
corresponds to surfaces between the Roche lobe and the
equipotential through the L point. He gave tables of vol-
ume radius, area, average gravity and average inverse grav-
ity as a function of mass ratio and F . Pathania and Medupe
() present series expansions for the radius of Roche
equipotential surfaces, and compare various orders of the
expansion to numerically calculated values.

The purpose of the present work is to present an freely
available software tool, written in two versions (Java and
Fortran), which calculates radii of the Roche lobe. It does
this for any specified direction, and gives some other com-
monly used quantities (such as the Lagrange points and
values of the potential). The calculator is designed to be
accurate for any mass ratio q between . and , for di-
mensionless rotation rates between . and , and fill-out
factors between . and .. The calculator may work for
parameters outside these limits but has not been tested for
accuracy or errors outside these limits.

The coordinates are Cartesian (x, y, z) and spherical-
polar (r, θ , φ), centred on star  (with mass M), with the
x-axis (θ = π/, φ = ) pointing towards star  (with mass
M). The z-axis is perpendicular to the orbital plane. The
mass ratio is defined as q = M/M and the binary separa-
tion is a.

We use the dimensionless form of the Roche poten-
tial (or potential energy per unit mass) obtained by di-
viding by GM/a, where G is Newton’s gravitational con-
stant, and using distances in units of the binary separa-
tion a. The equation for the resulting dimensionless po-

tential �(r, θ ,φ) in the case of synchronous rotation is:

�(r, θ ,φ) =

r

+ q
(

√
 – r sin θ cosφ + r

– r sin θ cosφ

)
+

q + 


r sin θ. ()

This is the same form used by Kopal () and Pathania
and Medupe (). When non-synchronous rotation is
included Limber (), with p = �star/�binary is the rate
of stellar rotation divided by the binary rotation rate, the
potential becomes:

�(r, θ ,φ) =

r

+ q
(

√
 – r sin θ cosφ + r

– r sin θ cosφ

)
+

q + 


pr sin θ. ()

This potential can be further generalized to the case
of elliptical orbits, as discussed in Sepinsky et al. ().
In the quasi-static approximation, valid for dynamical
timescale of the star much less than the tidal timescale,
the instantaneous shape of the star can be approximated
by the instantaneous surface of constant potential, even
though the instantaneous surface is changing with orbital
phase. As shown by Sepinsky et al. (), the instanta-
neous potential for an elliptical orbit can be written in the
same form as equation () above if one replaces p by the
function

A(p, e,ν) =
p( + e)

( + e cos(ν)) ()
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with e is the eccentricity and ν is the true anomaly for the
position of the star in its elliptical orbit.

For a physical system, one knows the actual values of the
masses M and M. Either one specifies the binary sepa-
ration a, or calculates it from the orbital period P, using
Kepler’s third law, πa = G(M + M)P. Dimensionless
distances are converted into physical units by multiplying
by a.

The Lagrange points are the locations where the poten-
tial (or dimensionless potential) has a maximum (or min-
imum) or saddle point. There are a total of  Lagrange
points (L, L, L, L and L). The L point is the La-
grange point located between the two stars. One finds the
positions of and the values of the potential at the Lagrange
points by solving

∇�(r, θ ,φ) = . ()

The Roche lobe (of star ) is the surface surrounding star
 having the potential equal to the potential of the L point.
The star can underfill its Roche lobe, in that case its sur-
face will still correspond to an equipotential surface. Here
we use the same definition of fill-out factor, F , as that intro-
duced by Mochnacki (). The dimensionless potential
used here is related to the potential C of Mochnacki ()
by:

� =
( + q)C


–

q

( + q)
. ()

F is defined by F = C/C with C the value of potential
for the Roche lobe and C the value of the potential for
the surface defined by fill-out factor F . Thus the dimen-
sionless potential for the Roche lobe is related to C by
�L = (+q)C

 – q

(+q) . The potential for the surface speci-
fied by F is here called �F . Thus the value of this potential
for a given value of F , in terms of mass ratio q and potential
�L at the L point, is:

�F =
�L + q

(+q)

F
–

q

( + q)
. ()

2 Implementation
The purpose of the calculator is to allow one to calculate
the precise size of the Roche lobe along the main coordi-
nate axes or in any specified direction (θ , φ). Sizes are given
along the x-axis, from the center of the star to the L La-
grange point, toward star  (positive x, called RL), and on
the back side away from star  (negative x, called Rbk). They
are given along the y-axis (called Ry) and along the z-axis
(called Rz). The Roche lobe has size Ry along the positive
and negative y-axes and size Rz along positive and negative
z-axes. Additional values are given for the x-coordinate
of the L and L points along the x-axis (called X and

X), and the values of the potential at the L point (�),
at the L point (�) and at the L point (�). The area,
A, and volume, V , of the Roche lobe are given (in units of
a and a, respectively), and the equivalent volume radius
Req, defined by V = πR

eq/ and area radius Ra, defined by
A = πR

a. For the case of F < , i.e. star  inside its Roche
lobe, the values of Rbk , Ry, Rz, A, V , Ra and Req are for the
stellar surface. Additionally the front radius, Rfr of the star
(along the positive x-axis) is given because it is not equal
to RL for F < .

The L, L and L Lagrange points are along the x-axis
(y = z = ). A root-finding routine is used to find the x-
value where the derivative of �(r, θ ,φ) along the x-axis is
zero. The root is found to an accuracy of  part in  (Java
version) and  part in  (Fortran version) using Brent’s
method (Brent ). This method combines the bisection
method, the secant method and inverse quadratic inter-
polation. It has been shown previously that the L and L
points lie in the x-y plane, and either of these when taken
with the mass centers of M and M form an equilateral
triangle, so are at fixed positions independent of mass ra-
tio. For further discussion of the Lagrange points see the
textbook Rosswog and Brüggen ().

Values of sizes of the Roche lobe along the major axes,
positions of the Lagrange points and the potentials are cal-
culated to accuracy which is limited by the root-finding al-
gorithm (the accuracy of the root finding algorithm can
be changed by changing tolerance parameter in the root-
finding subroutine of the source code). The Roche lobe
volume V and area A, and the radii Req and Ra, are ob-
tained by using a Romberg integration method in the For-
tran program and have been tested to be accurate to  dig-
its (see Section  below). A set of results of these integrated
quantities were calculated using the Fortran code for �
different values of q between . and , nearly equally
spaced in log(q). These were used as input to the Java code,
within which V , A, Req and Ra are calculated by interpo-
lation. As a result the integrated quantities from the Java
calculator are accurate to  digits or better in the range of
q from . to .

To get the radius of the Roche surface in an arbitrary di-
rection, R(θ ,φ), the user enters values of q, θ and φ (with
angles in radians or degrees). The root-finding algorithm,
using Brent’s method, finds the radius in the requested di-
rection which has potential equal to the L potential. The
user has the option of entering a text file containing a list
of (q, θ , φ) values. An example input list is given by the first
 columns of Table . The output is the input file with an
added fourth column, as shown in Table . The output can
be used, for example, to plot the Roche lobe surface in -D
or to obtain a cross section of the Roche lobe viewed from
any specific direction. To get the stellar surface for the case
of a star which is under-filling its Roche lobe, one speci-
fies an input value of F < . Then the calculator calculates
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Table 1 Example input (q, θ , φ) and output (R(θ ,φ))

q θ (degrees) φ (degrees) R(θ ,φ)

1 90 0 0.5000000
1 90 10 0.4551819
1 90 20 0.4256989
1 90 30 0.4055942
1 90 40 0.3918260
1 90 50 0.3826327
1 90 60 0.3769055
1 90 70 0.3738997
1 90 80 0.3730828
1 90 90 0.3740461

R(θ ,φ) for points with the potential equal to �F (equation
()). For F ≤ . the star is very nearly spherical.

3 Results
3.1 Roche lobe radii dependence on q, p and F
Figure  shows a plot of the radii RL, Rbk , Ry, Rz and Req
as a function of q for the range . ≤ q ≤  with the
radii calculated using the code described here. The radii
obey the relation Rz < Ry < Rbk < RL for all q. Req is larger
than Ry for q > ., and smaller than Ry for q > .. Fig-
ure  shows the radii as a function of dimensionless rota-
tion rate, p, for two values of q ( and ). The dependence
of the radii on p is very similar for the two values of q: RL
and Rz depend most strongly on p; Ry and Rbk depend most
weakly on p, and Req has an intermediate dependence on p.
The dependence on fill-out factor, F is considered next. For
F <  the front radius of the potential surface Rfr is smaller
than RL. Figure  shows Rfr , Rbk , Ry, Rz and Req depend on
F for two values of q ( and ) and with p = . Rfr depends
strongly on F , especially for F near to . The other radii de-
pend on F less strongly. The shape of the dependence on
F is very similar for different values of q.

To carry out the calculations of the Roche Lobe proper-
ties, a Java version with a graphic interface (see Additional
file ), and a Fortran  version, with a command line in-
terface (see Additional file ), were created.

3.2 Fits to Roche lobe radii
The Eggleton formula has been widely used to calculate
volume equivalent radius of the Roche lobe for the case
of synchronous rotation p =  (here we note that the q we
use is equivalent to /q used by Eggleton ()). It has ac-
curacy better than %. However, no similarly accurate for-
mula for the other radii (RL, Rbk , Ry, Rz) has been given.
Here, we check the accuracy of the Eggleton formula and
provide a somewhat improved version. We also show that
using a cubic spline fit yields accurate approximations of
the various radii.

First, a wide variety of different analytic formulae were
tested to search for a suitable approximation formula for
the radii (RL, Rbk , Ry, Rz and Req) as a function of q. These

Figure 2 Roche radii vs. mass ratio. The various Roche radii (RL1,
Rbk , Ry , Rz and Req in units of a) as a function of mass ratio q.

Figure 3 Roche radii vs. rotation rate. The various Roche radii (RL1,
Rbk , Ry , Rz and Req in units of a) as a function of dimensionless rotation
rate p, for q = 1 and q = 10.

formula are more complex than the Eggleton formula
(which limits their utility), so that they are not presented
here except for the simplest generalization. The simplest
generalization which gave good results for Req(q) is:a

Req =
aqa

aqa + ln( + aqa+/)
. ()
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Figure 4 Roche radii vs. fill-out factor. The various Roche radii (Rfr ,
Rbk , Ry , Rz and Req in units of a) as a function of fill-out factor F, for
q = 1 and q = 10, with p = 1.

The values of the coefficients were obtained by least-
squares fitting of the formula to � numerically calcu-
lated values of Req for values of q ranging from . to .
The resulting values of the coefficients are: a = .,
a = ., a = ., a = –., and a =
.. The root-mean-square (r.m.s.) of the residuals for
the formula values compared to the accurate numerical
values is . × –. For the above Req formula, the r.m.s.
increases to .×– with  digits, and to .×– with 
digits. For comparison the r.m.s. for the Eggleton formula
compared to the accurate numerical values is . × –.

A simple alternative to using complex analytical formula
is a cubic spline fit to a small table of radii vs. q. This gives
good results, and is simple to implement. A cubic spline fit
to the radii vs. log(q) was found to give significantly better
results than a fit to the radii vs. q, so log(q) is used as the
independent variable here. The small input table for the
cubic spline fit consists of numerically calculated values of
Req, RL, Rbk , Ry and Rz (accurate to  decimal places), at
 values of q between . and . The q values were
spaced in ratios of square root of  (then rounded to  dig-
its) resulting in  q values. The resulting cubic spline is
compared to values of the various radii numerically cal-
culated at  values of q between . and . When
the cubic spline is evaluated as a function of q, then the
r.m.s. of the spline fit compared to accurate numerical val-
ues ranges from . × – to . × – for the different
radii. When the cubic spline is evaluated as a function of
log(q), then the r.m.s. of the spline fit compared to accurate
numerical values ranges from . × – to . × – for

Figure 5 Accuracy of fits to Roche radii. The difference between a
cubic spline fit (see text for details) for RL1, Rbk , Ry , Rz and Req and the
numerically calculated values, as a function of mass ratio q. Also
shown is the difference between the Eggleton formula (REgg) and the
accurate Req , divided by 1,000. This shows that the spline fit is a factor
of ∼10,000 better than the Eggleton formula for Req . The vertical axis
has been scaled up by a factor of 106.

the different radii. For Req, the r.m.s. is . × –, which is
 times smaller than the Eggleton formula. The results of
the residuals of the cubic spline fits from accurate numeri-
cal values are shown in Figure , together with the residuals
of the Eggleton formula from accurate numerical values.

4 Discussion and conclusions
Here we present a freely available calculator for various
quantities related to the Roche lobe of a star in a binary
system. The calculator is provided in two versions: a Java
version which is easily installed and run on any computer
system with Java, and a Fortran  version, which can be
easily used and edited by anyone familiar with Fortran .
The calculator provides two general types of output. The
first type yields values of RL, �, X, �, X, �, Rbk , Ry,
Rz , A, V and Req, where the various symbols are defined
above, given input values of mass ratio, q, stellar rotation
parameter, p, and stellar fill-out factor, F . The second type
gives the Roche radius in any direction (θ , φ) specified by
the user. Both types allows a single input parameter set, or
multiple sets of input parameters in the form of a text file,
so that a large number of values of Roche radius can be
calculated quickly and conveniently.

The present calculator can be used to calculate the
instantaneous Roche lobe for elliptical orbits, for syn-
chronous or non-synchronous stars, by using the value of

p(+e)

(+e cos(ν))/ instead of p as an input, as explained in Sec-
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tion  above using equations () and (). The calculator has
only been tested for the range . ≤ p ≤ , which restricts
the corresponding range of p, e and ν for the elliptical orbit
case.

To check the accuracy and precision of the calculations
done here we compared calculated values from the Fortran
 version to the most recent published tables of values
for the Roche radii, done by Pathania and Medupe ().
For RL our values, in all cases they provide, agree to the 
digits given by Pathania and Medupe (). For Rbk our
values agree in all cases to  digits, and differ in the th
digit in about half the cases. For Ry and Rz, we agree to 
digits, but differ in the th digit in many cases. Because
we have calculated the radii using  different codes which
agree, and the Fortran  version has good error control,
we believe that the values we present are more precise than
previously published values.

To check for accuracy to more than  digits we rely on
tests that we have carried out. The Fortran  code was
written with all calculations done in double precision. The
Fortran version was run on three different Linux machines
with two different flavours of Linux (RedHat Fedora and
CentOS) and gave the same numerical results in all cases.
Additionally, a MathCad version (Parametric Technology
Corporation) was written on a Windows  computer sys-
tem to calculate all quantities accurate to  digit accuracy.
The Mathcad version was very slow to run for error toler-
ance – or less so it was not used to calculate higher accu-
racy results. Also the Mathcad program was written to use
different integration and root-finding algorithms than the
Fortran program as a check. The MathCad values agreed
with the Fortran  values to  digits or better. The calcu-
lated values from the Java version and the Fortran  ver-
sion agree to  digits or better for RL, �, X, �, X, �,
Rbk , Ry and Rz. For quantities obtained by interpolation in
the Java version (A, V and Req) the accuracy is lower (but
still better than  digits). The result is that we believe, for
the above reasons, the Fortran  program gives results
which are accurate and precise to  digits.

5 Availability and requirements
The above software is available in both Java and Fortran
 versions. The Java version is called the Roche Radius
Calculator, and is freely available as a zip file, with sim-
ple installation and usage instructions, from the Quark
Nova Project website at the University of Calgary (at
http://quarknova.ucalgary.ca/, follow the ‘software’ tab to
the entry ‘RoLo’ as the link ‘Download’). The Fortran 
version is available as Fortran  source code in a single
file at the same website under the ‘software’ tab to the en-
try ‘RoLo’ as the link RocheLobe.f.

Additional material

Additional file 1: Roche Radius Calculator.
Additional file 2: Fortran 90 source code.
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