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Abstract
We describe the implementation and performance of the P3T (Particle-Particle Particle-Tree) scheme for simulating
dense stellar systems. In P3T, the force experienced by a particle is split into short-range and long-range
contributions. Short-range forces are evaluated by direct summation and integrated with the fourth order Hermite
predictor-corrector method with the block timesteps. For long-range forces, we use a combination of the Barnes-Hut
tree code and the leapfrog integrator. The tree part of our simulation environment is accelerated using graphical
processing units (GPU), whereas the direct summation is carried out on the host CPU. Our code gives excellent
performance and accuracy for star cluster simulations with a large number of particles even when the core size of
the star cluster is small.

PACS Codes: 95.10.Ce; 98.10.+z

Keywords: methods: N-body simulations

1 Background
Direct N-body simulation has been the most useful tool
for the study of the evolution of collisional stellar systems
such as star clusters and the center of the galaxy (Aarseth
). The force calculations, of which the cost is O(N),
are the most compute-intensive part of direct N-body sim-
ulations. Barnes and Hut () developed a scheme which
reduces the calculation cost to O(N log N) by construct-
ing the tree structure and evaluating the multipole expan-
sions. Dehnen (, ) developed a scheme to re-
duce the calculation cost to O(N) by combining the fast
multipole method (Greengard and Rokhlin ) and the
tree code. Recently, the graphical processing units (GPU),
which is a device originally developed for rendering the
graphical image, started to be used for scientific simula-
tions. The tree code is also implemented on GPUs and it
is much faster than it is on CPUs (Gaburov et al. ;
Bédorf et al. ). Bédorf et al. () parallelized the tree
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code on GPUs and showed good scalability up to ,
GPUs. They also simulated the Milky Way Galaxy with
N of up to  billion and reported that the average cal-
culation time per iteration on , GPUs was . sec-
onds.

The tree schemes are widely used for collisionless system
simulations. However, for collisional system simulations,
the use of the tree code has been very limited. One rea-
son might be that a collisional stellar system spans a wide
range in timescales. Thus it is essential that each parti-
cle has its own integration timestep. This scheme is called
the individual timestep or the block timestep (McMillan
). However, when we use the tree code and the block
timestep together, the tree structure is reconstructed at ev-
ery block timestep, because the positions of integrated par-
ticle are updated. The cost of the usual complete recon-
struction of the tree is O(N log N) and not negligible.

To reduce the cost of the reconstruction of the tree,
McMillan and Aarseth () introduced local recon-
struction of tree. They demonstrated a good performance,
but there seems to be no obvious way to parallelize their
scheme.
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Recently, Oshino et al. () introduced another ap-
proach to combine the tree code and the block timesteps
which they called the PT scheme. This scheme is based
on the idea of Hamiltonian splitting (Kinoshita et al. ;
Wisdom and Holman ; Duncan et al. ; Cham-
bers ; Brunini and Viturro ; Fujii et al. ;
Moore and Quillen ). In the PT scheme, the Hamil-
tonian of the system is split into short-range and long-
range parts and they are integrated with different integra-
tors. The long-range part is evaluated with the tree code
and is integrated using the leapfrog scheme with a shared
timestep. The short range part is evaluated with direct
summation and integrated using the fourth-order Her-
mite scheme (Makino and Aarseth ) with the block
timesteps. They investigated the accuracy and the perfor-
mance of the PT scheme for planetary formation simula-
tions and showed that the PT scheme achieves high per-
formance.

In this paper, we present the implementation of the PT
scheme on GPUs and report its accuracy and performance
for star cluster simulations. We found that the PT scheme
demonstrates a very good performance for star cluster
simulations, even when the core of the cluster becomes
small.

The structure of this paper is as follows. In Section ,
we briefly describe the PT scheme. In Section , we re-
port the accuracy and performance of the PT scheme. We
summarize these results in Section .

2 Methods
2.1 Formulation
In this section, we describe the PT scheme. The Hamilto-
nian H of a gravitational N-body system is given by

H =
N∑

i

|pi|
mi

–
N∑

i

N∑

i<j

Gmimj

sij
, ()

sij =
√

|qij| + ε, ()

qij = qi – qj, ()

where pi, mi and qi are momentum, mass and position of
the particle i, respectively. To avoid the singularity of the
/r potential, we use the Plummer softening ε (Aarseth
). With the PT scheme, H is split into Hhard and Hsoft
as follows (Oshino et al. ):

H = Hhard + Hsoft, ()

Hhard =
N∑

i

|pi|
mi

–
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i

N∑

i<j

mimj

sij

[
 – W (sij)

]
, ()

Hsoft = –
N∑

i

N∑

i<j

mimj

sij
W (sij). ()

Here W (sij) is a smooth transition function. A suitable
form of W (sij) should be zero when a distance between
two particles is smaller than the inner cutoff radius rin
and should be unity if the distance is larger than the outer
cutoff radius rcut. This splitting is introduced by Cham-
bers () to avoid undesirable energy error from close
encounters between particles. Similar splitting has been
used with PM (Particle-Particle Particle-Mesh) scheme,
in which the long-range part of the interaction is evaluated
by using FFT (Hockney and Eastwood ).

Forces derived from Hhard and Hsoft are given by

Fhard,i = –
∂Hhard

∂qi
= –

N∑

j �=i

mimj

s
ij

(
 – K(sij)

)
qij, ()

Fsoft,i = –
∂Hsoft

∂qi
= –

N∑

j �=i

mimj

s
ij

K(sij)qij, ()

K(sij) = W (sij) – sij
dW (sij)

dsij
. ()

We call K(sij) the cutoff function.
The tree algorithm is used for the evaluation of Fsoft,i to

reduce the calculation cost.
The formal solution of the equation of motion for the

phase space coordinate w = (q, p) at time t +δt for the given
Hamiltonian H is

w(t + δt) = eδt{,H}w(t) = eδt{,Hsoft+Hhard}w(t). ()

Here the braces {, } stand for the Poisson bracket. In the
PT scheme, we use the second order approximation;

w(t + δt) = eδt/{,Hsoft}eδt{,Hhard}eδt/{,Hsoft}w(t) + O
(
δt).

()

Here, the formal solution for the Hsoft term is the sim-
ple velocity kick, since Hsoft contains the potential only.
We numerically integrate the Hhard term, since it can-
not be solved analytically. We use the fourth-order Her-
mite scheme with the block timestep (Makino and Aarseth
). The fourth-order integrator requires K(sij) to be
three-times differentiable with respect to position. We use
the following formula:

K(x) =

⎧
⎨

⎩

 (x < ),
–x + x – x + x ( ≤ x < ),
 ( ≤ x),

()

x =
y – γ

 – γ
, ()

y =
sij

rcut
, ()
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γ =
rin

rcut
. ()

This K(x) is the lowest-order polynomial which satis-
fies the requirement that derivatives up to the third order
is zero for x =  and  (i.e. the highest-order term of the
lowest-order polynomial is the seventh, because there are
eight boundary conditions at x =  and x = ).

In Figure , we plot K(y) (top panel) and forces (bot-
tom panel) with γ = .. According to Oshino et al. (),
Chambers (), K(y) with γ = ., is smooth enough to
be integrated. Thus, for all calculations, we use γ = ..
The functional form of W (y;γ ) is given by

W (y;γ )

=

⎧
⎪⎨

⎪⎩

(γ –γ +γ –γ  logγ –γ +γ –)
(γ –) y (y < γ ),

G(y;γ ) + ( – G(;γ ))y (γ ≤ y < ),
 ( ≤ y),

()
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(
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(
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(
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(
γ  + γ )y – γ y log(y)

+
(
γ  – γ  + γ  – γ ))/( – γ ).

()

With the PT scheme, the time integration proceeds as
follows:

() At time t, by using the tree code, calculate the
acceleration due to Hsoft, asoft,i, and construct a list
of all particles which come within rcut from particle i
for �tsoft. Here, �tsoft is the timestep for the soft
Hamiltonian.

() Update the velocities of all particles with
vnew,i = vold,i + (/)�tsoftasoft,i.

() Integrate all particles to time t + �tsoft under Hhard ,
using the neighbour list and the fourth order
Hermite integrator with the block timesteps.

() Calculate the acceleration due to Hsoft at new time
t + �tsoft and update the velocity

() Go back to step .
For the timestep criterion for the block timestep, we use

the following form (Oshino et al. ).

�ti = min

(
η

√√√√√

√
|a()

i | + a
|a()

i | + |a()
i |

|a()
i ||a()

i | + |a()
i | ,�tmax

)
,

()

a = α
m

r
cut

. ()

Figure 1 The cutoff function K(y) (top) and the forces (bottom)
as functions of y = sij/rcut .

Here η is the accuracy parameter of the timestep and its
typical value is .. �tmax is the maximum timestep which
should be smaller than �tsoft, a(n)

i is the nth time derivative
of the acceleration of particle i, a is a constant introduced
to prevent �ti from becoming too small when the distance
to the nearest neighbor is close to rcut and α is a parameter
to control a. In this case, the acceleration from Hhard be-
comes very small and there is no need to use very small �ti.
According to Oshino et al. (), when we choose α ≤ ,
α hardly affects the energy error. Thus we set α = . for all
simulations.

In our Hermite implementation, a()
i and a()

i are derived
using interpolation of a()

i and a()
i , and as a consequence

we cannot use equation () for the first step. We use:

�ti = min

(
ηs

√√√√ |a()
i | + a



|a()
i | ,�tmax

)
. ()

This criterion dose not contain the nd and rd time
derivatives of the acceleration. To prevent the timestep de-
rived by equation () from becoming too large, we set ηs
to be the one-tenth of η for all simulation in this paper.

We summarize all accuracy parameters in Table .
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Table 1 Symbols and definitions for the accuracy parameters of the P3T scheme

α timestep softening. For all runs α = 0.1
γ ratio of inner and outer cutoff radius (rin/rcut). For all runs γ = 0.1
�rbuff width of the buffer shell. �rbuff = 3σ�tsoft , as a standard value
�tsoft timestep of the soft part. �tsoft = (1/256)(N/16K)–1/3, as a standard value
�tmax maximum timestep of the hard part. �tmax =�tsoft/4, as a standard value
ε plummer softening length. ε = (4/N), as a standard value
η accuracy parameter for timestep criterion. η = 0.1, as a standard value
rcut outer cutoff radius of smooth transition functionsW and K . rcut = 4�tsoft , as a standard value
rin inner cutoff radius of smooth transition functionsW and K (rin = γ rcut)
θ opening criterion for tree. θ = 0.4, as a standard value

2.2 Implementation on GPUs
Even with the Barnes-Hut tree algorithm, obtaining Fsoft,i
is still costly and dominates the total calculation time (Os-
hino et al. ). To accelerate this part, we use GPUs,
by modifying the sequoia library (Bédorf, Gaburov and
Portegies Zwart, submitted to ComAC), on which the
high-performance tree code for parallel GPUs Bonsai
(Bédorf et al. ) is based. Our library calculates the long
range forces on all particles, Fsoft,i by the Barnes-Hut tree
algorithm (up to the quadrupole moment). On the other
hand, we calculate Fhard,i on the host computer. The library
also returns, for each particle, the list of particles within
the distance h from it. We use this list of neighbors to cal-
culate Fhard,i. The value of h should be sufficiently larger
than rcut to guarantee that the particles which are not on
the list of the neighbors of particle i do not enter the sphere
of the radius rcut around particle i during the time interval
�tsoft.

We call the sphere with a radius of rcut the neighbor
sphere and the shell between the sphere with a radius of
h and the neighbor sphere the buffer shell. The particles of
which the nearest neighbor is outside the sphere with ra-
dius h are considered isolated and the particles on the list
of neighbors are considered neighbor particles. We denote
the width of the buffer shell as �rbuff (i.e. h = rcut + �rbuff ).

The compute procedures of our implementation of the
PT scheme on GPU is as follows:

() Evaluate long range forces on all particles Fsoft,i using
GPU.

() Particles are divided into two groups; isolated and
non-isolated, by using the neighbour list made on
GPU.

() For non-isolated particles, Fhard,i are calculated on
the host computer.

() All particles receive a velocity kick through Fsoft,i for
�tsoft/.

() Isolated particles are drifted by ri ← ri + �tsoftvi.
() Non-isolated particles are integrated with the

fourth-order Hermite scheme for �tsoft.
() Evaluate Fsoft,i and make the neighbour list in the

same way as in step -.

() All particles obtain the velocity kick again for
�tsoft/.

() go back to step .

3 Results
3.1 Accuracy and performance
We performed a number of test calculations using the PT
scheme on GPUs, to study its accuracy and performance.
In this section, we describe the result of these tests. For
most of them we adopted a Plummer model (Plummer
) with K (hereafter K = ) equal-mass particles
as the initial condition. We use the so-called N-body unit
or Heggie unit, in which total mass M = , the gravita-
tional constant G =  and total energy E = –/ (Heggie
and Mathieu ). To avoid the singularity of the gravi-
tational potential, we use the Plummer softening and set
ε = /N . Since this value is a typical separation of a hard
binary in the N-body unit, we can follow the evolution of
the system up to the moment of the core collapse.

Note, in this paper, we use the energy errors as an in-
dicator of the accuracy of the scheme. However, energy
conservation dose not guarantee accuracy of simulations
(though it is necessary). Thus we will perform realistic sim-
ulations in Section . and check the statistical character of
stellar systems by comparing the results with the Hermite
scheme, which is widely used in collisional stellar system
simulations. As we will see later, for simulations of the core
collapse of the star cluster, when the relative energy error
is �– at the moment of the core collapse, the behavior
of the core collapse with the PT scheme agrees with that
with the Hermite scheme very well.

.. Accuracy
With the PT scheme, we have six accuracy parameters.

First, we discuss how each parameter controls the accuracy
of the PT scheme. Finally, we describe the accumulation
of the energy error in a long-term integration. To measure
energy errors accurately, we calculate potential energies by
the direct summation instead of the tree code for all runs
in this paper.
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Figure 2 Maximum relative energy errors as functions of rcut (left) and �tsoft/rcutσ (right). Top, middle and bottom panels show the results
for θ = 0.2, 0.4 and 0.8, respectively. For all runs, we use η = 0.1, �tmax =�tsoft/4 and �rbuff = 3σ�tsoft .

Effect of rcut, �tsoft and θ In Figure , we present the max-
imum relative energy error |�Emax/E| over  N-body
time units as a function of rcut and �tsoft for several dif-
ferent values of the opening criterion of the tree, θ . Here
�Emax is the maximum energy error and E is the initial
energy. We choose η = ., �tmax = �tsoft/ and �rbuff =
σ�tsoft, where σ is the global three dimensional velocity
dispersion and we adopt σ = /

√
.

We can see that the error is smaller for smaller θ , smaller
�tsoft, or larger rcut. Roughly speaking, the error depends
on two terms, �tsoft/rcutσ and θ . If �tsoft/rcutσ is large, it
determines the error. In this regime, the error is dominated
by the truncation error of the leapfrog integrator. If it is

small enough, θ determines the error, in other words, the
tree force error dominates the total error. Even for a very
small value of θ like ., the tree force error dominates if
�tsoft/rcutσ � ..

In Figure , we plot the maximum energy error as a func-
tion of θ . We use the same η, �tmax and �rbuff as in Fig-
ure . For the runs with rcut = / and �tsoft = /, the
energy error does not drop below – because the error
of the leapfrog integrator is larger than the tree force er-
ror. In an chaotic system like the model used in our sim-
ulations such energy error is sufficient to warrant a sci-
entifically reliable result (Portegies Zwart and Boekholt
). On the other hand, for the run with rcut = / and
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Figure 3 Maximum relative energy error as a function of θ . For all
runs, we use η = 0.1, �tmax =�tsoft/4 and �rbuff = 3σ�tsoft .

Figure 4 Maximum relative energy error as a function of �rbuff
in unit of �tsoftσ . Here σ is the global three dimensional velocity
dispersion of the system (= 1/

√
2). For all runs, we use η = 0.1,

�tsoft = 1/512, tmax =�tsoft/4, θ = 0.1 and �rbuff = 3σ�tsoft .

�tsoft = /,, integration error is smaller than the tree
force error.

Effect of �rbuff In Figure , we show the maximum rel-
ative energy error as a function of �rbuff for the runs
with �tmax = �tsoft/, η = ., θ = ., for (�tsoft, rcut) =
(/, /) and (/,, /). The energy error is al-
most constant for �rbuff � �tsoftσ , which indicates that
the energy error for �rbuff < �tsoftσ is caused by parti-
cles that are initially outside the buffer shell (with radius
rcut + �rbuff ) and plunge into the neighbour sphere (with
radius rcut) during the timestep �tsoft. We can prevent this
by adopting �rbuff � �tsoftσ .

Effect of �tmax and η The maximum relative energy er-
rors over  N-body time units are shown in the top panel
of Figure  as a function of η and the number of steps for

Figure 5 Maximum relative energy error and the steps for the
Hermite part against η. Top and bottom panels show the maximum
relative energy error and the steps for the Hermite part par particle
par unit time against η, respectively.

the Hermite part (per particle per unit time, Nstep) are pre-
sented in the bottom panel. The energy errors go down as
η decrease until η ∼ .. For η � ., the errors hardly de-
pend on �tmax.

Long term integration In Figure , we show the time
evolution of the relative energy error until T = . We
compare the accuracy of our PT scheme with two other
schemes, the direct fourth-order Hermite scheme and the
leapfrog scheme with the Barnes-Hut tree code. The calcu-
lations with the direct Hermite scheme are performed by
using the Sapporo library on GPU (Gaburov and Harfst
), and the calculations with the leapfrog scheme are
performed by using the Bonsai library on GPU (Bédorf
et al. ). The energy error of the PT scheme behaves
like a random walk whereas that of the leapfrog and the
Hermite schemes grow monotonically. In the right-hand
panels of Figure , we show the same evolution of the er-
ror as in the left panels, but time is plotted with a logarith-
mic scale. This allows us to realize that the error growth of
Hermite and tree schemes are linear, whereas the error in
the PT scheme grows as ∝ T /. This latter proportion-
ality is caused by the short-term error of the PT scheme,
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Figure 6 Evolution of relative energy errors with various schemes. We use �tmax =�tsoft/4, �rbuff = 3σ�tsoft for all runs and θ = 0.4 for the
tree code and η = 0.1 for the Hermite scheme. In left and right panels, the x-axes are linear and logarithmic scales, respectively. Thin curves in right
panels are proportional to T (solid) and T1/2 (dashed).

which is dominated by the randomly changing tree-force
error. For long-term integration the PT scheme conserves
energy better than the Hermite or leapfrog schemes.

.. Calculation cost
In this section, we discuss the calculation cost of the PT
scheme and its dependence on the number of particles N ,
required accuracy, and other parameters.

First, we construct a simple theoretical model of the de-
pendence of the calculation cost on parameters of the in-
tegration scheme such as N , �tsoft, θ and rcut. Finally, we
derive the optimal set of parameters from the model and
compare this model with the result of the numerical tests.
We found that the calculation cost per unit time is propor-
tional to N/.

Theoretical model The calculation cost for the force
evaluations in PT is split into the tree part and the Her-
mite part. For the tree part, the calculation cost of evalu-
ating forces for all particles per tree step is proportional
to O(θ–N log N). Since we use constant timestep for the
tree part, the calculation costs of the integration of par-
ticles per unit time for the tree part is proportional to
O(θ–N log N/�tsoft).

For the Hermite part, since each particle has its own
neighbour particles and timesteps, the number of interac-
tions for all particles per unit timstep is given by

Nint,hard =
N∑

i

Nngh,iNstep,i ()

∼
N∑

i

π/(rcut + �rbuff )ni〈�ti〉– ()

∝ N(rcut + �rbuff )〈〈�t〉〉–. ()

Here Nngh,i is the number of the neighbour particles
around particle i, Nstep,i is the number of timesteps re-
quired to integrate particle i for one unit time, ni is the lo-
cal density around particle i, 〈�ti〉 is the average timestep
of particle i over one unit time and 〈〈�t〉〉 is the average
of 〈�ti〉 over all particles. Here we assume ni is constant
within the radius of rcut + �rbuff around particle i.

Next we express the 〈〈�t〉〉 as a function of N and rcut.
To simplify the discussion, we define the timestep of the
particle through the relative position and velocity from its
nearest neighbour particle; 〈〈�t〉〉 ∝ rNN/vNN, where rNN



Iwasawa et al. Computational Astrophysics and Cosmology  (2015) 2:6 Page 8 of 15

and vNN are the relative position and the velocity of the
nearest neighbour particle. We can replace vNN to the ve-
locity dispersion σ . Thus average timestep is given by

〈〈�t〉〉 ∝ rNN/vNN ∼ rNN/σ . ()

To further simplify the derivation we assume that the
number density of particles in the system is uniform. If
rcut is larger than the mean inter-particle distance 〈r〉 (i.e.
if most particles have neighbour particles), the average
timestep is roughly given by

〈〈�t〉〉 ∼ min

(
η

R
σ

N–/,�tmax

)
, ()

where R is the typical size of the system. In this case, the
average timestep depend only on N (does not depend on
rcut).

If rcut is small compared to 〈r〉, most particles are iso-
lated and most of the non-isolated particles have only one
neighbour particle. In this case, 〈〈�t〉〉 is given by

〈〈�t〉〉 ∼ min

(
η

rcut

σ
,�tmax

)
. ()

In Figure  we show the number of steps per particle per
unit time Nstep for a plummer sphere as a function of N
(top panel) and as a function of rcut (bottom panel). In the
top panel, we can see that Nstep is roughly proportional to
N / for large N (i.e. 〈r〉 is small). On the other hand when
N is small Nstep is almost constant because 〈r〉 is large (see
equation ()).

The bottom panel of Figure  shows that all curves
eventually approach to constant values for both of large
and small rcut. For large rcut, the timesteps of the non-
isolated particles are determined by N , not by rcut (see
equation ()), whereas for small values of rcut the non-
isolated particles have a timesteps �tmax. This is be-
cause most neighbouring particles are in the buffer shell
and not in the neighbour sphere. For runs with �tsoft =
/,, /, and /, we can see bumps of Nstep at
rcut ∼ / due to the dependence on rcut shown in equa-
tion ().

Using above discussions, the number of interactions for
all particles per unit time of the Hermite part Nint,hard and
the tree part Nint,soft are given by

Nint,hard ∝
{

N/(rcut + �rbuff ) (for rcut 
 〈r〉),
N(rcut + �rbuff ) (for rcut � 〈r〉), ()

Nint,soft ∝ θ–N log N/�tsoft, ()

Optimal set of accuracy parameters In this section, we
derive the optimal values of rcut and �tsoft from the point
of view of the balance of the calculation costs between the

Figure 7 Number of steps of non-isolated particles as functions
of N (top) and rcut (bottom). Bottom panel shows the result of the
runs with N = 128k. For all runs, we chose η = 0.1, �rbuff = 3σ�tsoft
and �tmax =�tsoft/4.

tree and the Hermite parts, in other words we express rcut
and �tsoft as functions of N such that Nint,hard/Nint,soft is in-
dependent of N . Following the discussion in Section ..
and because the energy errors can be controlled through
�tsoft/rcut and �tsoft/�rbuff , rcut and �rbuff should be pro-
portional to �tsoft.

The requirements are met for Nint,hard ∝ N/(rcut +
�rbuff ) (or N(rcut + �rbuff )), �tsoft ∝ N–/ and rcut ∝
N–/ and both Nint,hard and Nint,soft are proportional to
N/ (or N/). Here we have neglected the log N depen-
dence in the tree part.

This is illustrated in Figure , where we plot Nint,hard for
a plummer sphere as a function of N . Following above dis-
cussions, we use the N-dependent tree timestep: �tsoft =
(/)(N/K)–/ and Nint,hard as well as Nint,soft are pro-
portional to N/.

In Figures  and , we plot the wall-clock time of
execution Tcal and the maximum relative energy errors
|�Emax/E| for the time integration for  N-body units
against N . Figure  shows the results of the runs with
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Figure 8 Number of interactions for all particles per unit time as
a function of N. For all runs, we use �rbuff = 3σ�tsoft , η = 0.1,
�tmax =�tsoft/4 and �tsoft = (1/256)(N/16K)–1/3 .

Figure 9 Wall-clock time of execution as a function of N. Top
(bottom) panel shows the results of the runs with rcut/�tsoft = 2(4).
We use θ = 0.4, η = 0.1, �rbuff = 3σ�tsoft and
�tsoft = (1/256)(N/16K)–1/3 .

rcut/�tsoft =  (top panel) and  (bottom panel). All runs
in these figures are carried out on NVIDIA GeForce
GTXa GPU and Intel Core i-K CPU. For each
run, we use one CPU core and one GPU card.

Figure 10 Maximum relative energy errors over 10 N-body time
units. All runs are the same as those in Figure 9.

We also perform the simulations using the direct Her-
mite integrator with the same η and the standard tree
code with the same θ and �tsoft. These calculations are
performed with the Sapporo GPU library (Gaburov and
Harfst ) and a standard tree code with the same θ

and �tsoft using the Bonsai GPU library (Bédorf et al.
). The calculation time for our PT implementation
is also proportional to N/, as we presented above, while
for the Hermite integrator it is proportional to N/. The
PT scheme is faster than the direct Hermite integrator for
N > K and when N = M (M = ), the PT scheme is
about  times faster than the direct Hermite scheme. The
pure tree code is slightly faster than the PT scheme, but
the integration errors are worse by several orders of mag-
nitude (see Figures  and ).

3.2 Examples of practical applications
In Sections .. and .., we presented a detailed discus-
sion on the accuracy and performance of our PT scheme.
However, we performed simple simulations, where the
stellar systems are in the dynamical equilibrium. In this
section, we study the performance of our PT scheme
when applied to more realistic, or more difficult, simula-
tions by comparing the results of the Hermite scheme. In
Section .., we discuss the case of the simulation of star
clusters up to core collapse. In Section .., we discuss
the case of a galaxy model with massive central black hole
binary.

.. Star cluster down to core collapse
In this section, we discuss the performance of our PT
scheme for the simulation of the core collapse of a star
cluster. First, we describe the initial condition and param-
eters of the integration scheme. Next, we compare the cal-
culation results obtained by the PT and Hermite schemes,
and finally, the calculation speed.
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Figure 11 Time evolution of the core density (top) and the core
radius (bottom). Thick and thin curves show the results of the P3T
and Hermite scheme, respectively. The curves for different runs are
vertically shifted by a factor of 8 (top) and 2 (bottom).

Initial conditions We apply the PT scheme to the evo-
lution of a star cluster consisting of K stars to the mo-
ment of the core collapse (Lynden-Bell and Eggleton ).
We use an equal-mass plummer model as an initial den-
sity profile and we adopt η = .. We apply the Plummer
softening ε = /N = /,. The simulations are termi-
nated when the core number-density exceeds , at which
point the mean interparticle distance in the core is com-
parable to ε. Next, we set θ . We must choose θ so that the
tree force error is smaller than the force due to the two-
body relaxation. Hernquist et al. () pointed out that,
for θ = . with monopole and quadrupole, the tree-force
error is much smaller than the force due to the two-body
relaxation. Thus we choose θ = . with quadrupole as a
standard model. For comparison, we also perform a run
with θ = ..

To resolve the motions of the particles in the core, we im-
pose �tsoft to be smaller than / of the dynamical time
of the core (∼ √

π/ρcore, where ρcore is the core density).
To reduce the calculation cost for the Hermite part we re-
quire rcut ∝ ρ–/

core and set the initial value of rcut = /. We
also change �rbuff = σcore�tsoft, where σcore is the velocity
dispersion in the core, and �tmax = �tsoft/, as �tsoft and

Figure 12 Relative energy error as functions of ρcore (top) and
time (bottom).

σcore are changing. Here, to calculate ρcore and σcore, we use
the formula proposed by Casertano and Hut (). The
same simulation is repeated using the fourth-order Her-
mite scheme with the block timesteps with the same value
of η = ..

Results In Figure  we present the evolution of the core
densities ρcore (top panel) and the core radii rcore (bottom
panel) for PT and Hermite schemes. For each scheme, we
perform three runs, changing the initial random seed for
generating the initial conditions of the Plummer model.
The behaviors of the cores for all runs are similar. The dif-
ferences between two schemes are smaller than run-to-run
variations.

Figure  shows the relative energy errors of the runs
with the same initial seed as functions of the core density
(top panel) and the time (bottom panel). The energy errors
of the runs with PT scheme change randomly, whereas
those of the Hermite code grow monotonically. As a re-
sult, the PT scheme with θ = . conserves energy better
than the Hermite scheme in the long run. The errors for
the PT scheme with θ = . is slightly worse than that of
the Hermite scheme, but the behavior of the core are sim-
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Figure 13 Wall-clock time of execution as functions of ρcore . In
top and bottom panels, the y-axes are logarithmic and linear scales,
respectively.

ilar with other runs. Thus the choice of θ = . is enough
to follow the core collapse simulations.

Calculation speed Figure  shows the calculation time
of the PT scheme (θ = .) and Hermite scheme on GPU.
As shown in this figure, the calculation time of the PT
scheme is dominated by the tree (soft) part calculation.

Initially the PT scheme is much faster than the Her-
mite scheme, but after the time when ρcore ∼ , the PT
scheme is slightly slower than the Hermite scheme because
in the PT scheme, �tsoft is proportional to ρ–/

core . How-
ever, even for the PT scheme, the CPU time spent after
ρcore reaches  is small. As a result, the calculation time
to the moment of the core collapse of the PT scheme is
smaller than that of the Hermite scheme by a factor of
two.

.. Orbital evolution of SMBH binary
In this section, we also discuss the performance of the
PT scheme applied to simulations of a galaxy with a su-
permassive black hole (SMBH) binary. First, we describe
the initial conditions and parameters of the integration
scheme. Next, we compare the calculation results obtained
by the PT and Hermite schemes, and finally, the calcula-
tion speed.

Initial conditions and methods We use the Plummer
model with N = K, K and K as the initial galaxy
model. Two SMBH particles with a mass of % of that of
the galaxy are placed at the positions (±., ., .) with
the velocities (.,±., .). We use three values for the
cut off radius with respect to three different kinds of inter-
actions. For the interaction between field stars (FSs), we
set rcut,FS–FS = /. For the interaction between SMBHs,
the force is not split and Fsoft = . In other words, the
force between SMBHs is integrated with the pure Her-
mite scheme. We set the cut off radius between SMBH
and FS rcut,BH–FS = / which is large enough that �tsoft is
smaller than the Kepler time of a particle in orbit around
the SMBH binary at a distance of rcut,BH–FS. We use the
Plummer softening ε = – for the interactions between
FS-FS and FS-SMBH. For the SMBH-SMBH interaction,
we do not use the softening. The accuracy parameter of
timestep criterion for FS ηFS is ., and for SMBH ηBH
is .. We adopt �rbuff = σ�tsoft, �tmax = �tsoft/ and
θ = ..

We use �tsoft = /, at T = , and as the binary be-
comes harder, we decrease �tsoft to suppress the aliasing
error of the binary. As a standard model, we set �tsoft to
be less than half of the Kepler time of the SMBH binary
tkep. Only for N = K, we also perform two other runs,
where �tsoft < tkep/ and tkep.

We also perform the same simulations by the Hermite
scheme with the same ηFS and ηBH.

Results Figure  shows the evolution of the semi-major
axis (top panel) and eccentricity (middle panel) of the
SMBH binary and the relative energy error (bottom panel)
as functions of time for our standard models (�tsoft <
tkep/). The behaviors of the semi-major axis of the SMBH
binary for the runs with the same N agree very well. The
hardening rate of the binary depends on N because of the
loss-cone refilling through the two-body relaxation (Begel-
man et al. ; Makino and Funato ; Berczik et al.
). The evolution of the eccentricity has large varia-
tion, because this evolution is sensitive to small N fluctua-
tion (Merritt et al. ). In the cases of N = K with the
Hermite scheme, the relative energy error increases dra-
matically after T =  because the binding energy and the
eccentricity of the binary are very high.

Figure  is the same as Figure  but for several differ-
ent values of �tsoft. Thick solid, dashed and dotted curves
indicate the results for �tsoft < tkep/, tkep/ and tkep, re-
spectively. The orbital parameters show similar behaviors
for all runs. The absolute value of the energy errors of PT
runs (∼–) are small compared with the binding energy
of SMBH binary, which is roughly ..

Calculation speed Figure  shows the calculation time
for runs for several different values of N with �tsoft < tkep/.
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Figure 14 Evolution of semi-major axis (top), eccentricity
(middle) of the SMBH binary and energy error (bottom) for
several different values of N.

Initially, the PT scheme is much faster than the Her-
mite scheme. As the SMBH binary becomes harder, the
PT scheme slows down more significantly than the direct
Hermite scheme does. We can see that Tcal of the Her-
mite scheme is roughly proportional to a– for a– > ,
whereas that of the PT scheme is roughly proportional
to a–/, because �tsoft is proportional to the Kepler time
of the binary (∝ a/). However, the calculation time for
all runs with the PT scheme is shorter than that with the
Hermite scheme by a = /. We can also confirm that as
we use more N , the ratio of the calculation time of the PT
scheme to the Hermite scheme become larger. The reason
why the PT scheme becomes slower for large a– is simply
that we force the timestep of all particles to be smaller than
the orbital period of the SMBH binary. For the Hermite
scheme, we do not put such constraint. Thus, in the Her-
mite scheme, particles far away from the SMBH have the
timestep much larger than the orbital period of the SMBH

Figure 15 Evolution of semi-major axis (top), eccentricity
(middle) of the SMBH binary and energy error (bottom) for the
several different valuse of �tsoft . Thick solid, dashed and dotted
curves show the results of P3T scheme with �tsoft is less than tkep/4,
tkep/2 and tkep , respectively.

binary. This large timestep can cause accuracy problem
(Nitadori and Makino ). With PT, it is possible to
apply the perturbation approximation to Fsoft between the
SMBH binary and other particles. Such a treatment should
improve the accuracy and speed of the PT scheme when
the SMBH binary becomes very hard.

In Figure , we plot the calculation time of the hard and
soft parts for the standard model with N = k. We can
see that the soft parts dominate the calculation time.

In Figure , we compare the calculation time for the
runs with various �tsoft (< tkep, tkep/, tkep/). Since the
most of the calculation time is spent after the binary be-
comes hard, the calculation time strongly depends on the
criterion of the �tsoft. From Figure , the evolution of the
orbital parameters for all runs with the PT scheme are
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Figure 16 Wall-clock times as a function of 1/a (top and middle)
and the system time of the simulations (bottom) for several
different values of N. In top and middle panels, the x- and y-axis are
logarithmic and linear scales, respectively. In the bottom panel, the
x-axis is scaled by N/16K.

similar for various �tsoft criteria. Thus we could choose
larger �tsoft � tkep after the binary formation.

4 Conclusions
We have described the implementation and performance
of the PT scheme for simulating dense stellar systems.
In our implementation, the tree part is accelerated using

Figure 17 Wall-clock times as a function of 1/a. In top and bottom
panels, the x- and y-axis are logarithmic and linear scales, respectively.

GPU. The accuracy and performance of the PT scheme
can be controlled through six parameters: �rcut, �rbuff ,
�tsoft, �tmax, η and θ . We find that �rbuff � σ�tsoft is a
good choice to prevent non-neighbour particles from en-
tering the neighbour sphere. The integration errors can
be controlled through �tsoft/�rcutσ . For θ = ., if we set
�tsoft to be less than .�rcut/σ , the integration error is
smaller than the tree force error. For the Hermite part, if
we choose η � ., the errors hardly depend on �tmax.

From the point of view of the balance of the calculation
costs between the tree and Hermite parts, we derive the
optimal set of accuracy parameters, and find that the cal-
culation cost is proportional to N/.

The PT scheme is suitable for simulating large N stel-
lar clusters with a high density contrast, such as star clus-
ters or galactic nuclei. We demonstrate the efficiency of the
code and show that it is able to integrate N-body systems
to the moment of the core collapse. We also performed the
simulations of the galaxy with the SMBH binary and found
that the PT scheme can be applied to these simulations.

Finally, we discuss the possibilities of implementing two
important effects on star cluster evolution in PT. The first
is the effect of a tidal field which dramatically changes the
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Figure 18 Wall-clock time as a function of 1/a for several
different values of �tsoft . In top and bottom panels, the x- and
y-axis are logarithmic and linear scales, respectively.

collapse time and the evaporation time of a star cluster.
The tidal field effect can be included in the soft part.

The other is an effect of stellar-mass binaries. A stellar-
mass binary plays an important role in halting the core
collapse. In this paper, we introduce the Plummer soft-
ening and neglect these binary effect. However, we could
treat these effects by integrating stellar-mass binaries in
the hard part.

Our PT code is incorporated in the AMUSE frame-
works and free for use (Portegies Zwart et al. ; Pelu-
pessy et al. ).
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Endnote
a GTX680 does not have ECC (Error Check and Correct) memories.

However, as we will see later, we do not observe any large energy error in
any of our runs, which means the hardware error does not affect our
result. Betz et al. (2014) performed Molecular Dynamics simulations, in
order to investigate the rate of bit-flip error events. They observed a
single bit-flip error event in about 4,700 GPU*hours without ECC and
conclude that the bit-flip error is exceedingly rare.
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