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Abstract
We present the black hole accretion code (BHAC), a new multidimensional general-relativistic
magnetohydrodynamics module for the MPI-AMRVAC framework. BHAC has been designed to solve the equations
of ideal general-relativistic magnetohydrodynamics in arbitrary spacetimes and exploits adaptive mesh refinement
techniques with an efficient block-based approach. Several spacetimes have already been implemented and tested.
We demonstrate the validity of BHAC by means of various one-, two-, and three-dimensional test problems, as well
as through a close comparison with the HARM3D code in the case of a torus accreting onto a black hole. The
convergence of a turbulent accretion scenario is investigated with several diagnostics and we find accretion rates
and horizon-penetrating fluxes to be convergent to within a few percent when the problem is run in three
dimensions. Our analysis also involves the study of the corresponding thermal synchrotron emission, which is
performed by means of a new general-relativistic radiative transfer code, BHOSS. The resulting synthetic intensity
maps of accretion onto black holes are found to be convergent with increasing resolution and are anticipated to play
a crucial role in the interpretation of horizon-scale images resulting from upcoming radio observations of the source
at the Galactic Center.

1 Introduction
Accreting black holes (BHs) are amongst the most pow-
erful astrophysical objects in the Universe. A substantial
fraction of the gravitational binding energy of the accret-
ing gas is released within tens of gravitational radii from
the BH, and this energy supplies the power for a rich
phenomenology of astrophysical systems including ac-
tive galactic nuclei, X-ray binaries and gamma-ray bursts.
Since the radiated energy originates from the vicinity of
the BH, a fully general-relativistic treatment is essential
for the modelling of these objects and the flows of plasma
in their vicinity.

Depending on the mass accretion rate, a given system
can be found in various spectral states, with different ra-
diation mechanisms dominating and varying degrees of
coupling between radiation and gas (Fender et al. ;
Markoff ). Some supermassive BHs, including the
primary targets of observations by the Event-Horizon-
Telescope Collaboration (EHTCa), i.e., Sgr A* and M, are
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accreting well below the Eddington accretion rate (Mar-
rone et al. ; Ho ). In this regime, the accre-
tion flow advects most of the viscously released energy
into the BH rather than radiating it to infinity. Such op-
tically thin, radiatively inefficient and geometrically thick
flows are termed advection-dominated accretion flows
(ADAFs, see (Narayan and Yi ; Narayan and Yi ;
Abramowicz et al. ; Yuan and Narayan )) and
can be modelled without radiation feedback. Next to
the ADAF, two additional radiatively inefficient accre-
tion flows (RIAFs) exist: The advection-dominated inflow-
outflow solution (ADIOS) (Blandford and Begelman ;
Begelman ) and the convection-dominated accretion
flow (CDAF) (Narayan et al. ; Quataert and Gruzi-
nov ), which include respectively, the physical effects
of outflows and convection. Analytical and semi-analytical
approaches are reasonably successful in reproducing the
main features in the spectra of ADAFs [see, e.g., Yuan et
al. ()]. However, numerical general-relativistic mag-
netohydrodynamic (GRMHD) simulations are essential to
gain an understanding of the detailed physical processes
at play in the Galactic Centre and other low-luminosity
compact objects.
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Modern BH accretion-disk theory suggests that an-
gular momentum transport is due to MHD turbulence
driven by the magnetorotational instability (MRI) within
a differentially rotating disk (Balbus and Hawley ;
Balbus and Hawley ). Recent non-radiative GRMHD
simulations of BH accretion systems in an ADAF regime
have resolved these processes and reveal a flow structure
that can be decomposed into a disk, a corona, a disk-
wind and a highly magnetized polar funnel [see, e.g., Vil-
liers and Hawley (); McKinney and Gammie ();
McKinney (); McKinney and Blandford ()]. The
simulations show complex time-dependent behaviour in
the disk, corona and wind. Depending on BH spin, the
polar regions of the flow contain a nearly force-free,
Poynting-flux-dominated jet [see, e.g., Blandford and Zna-
jek (); McKinney and Gammie (); Hawley and
Krolik (); McKinney ()].

In addition to having to deal with highly nonlinear dy-
namics that spans a large range in plasma parameters, the
numerical simulations also need to follow phenomena that
occur across multiple physical scales. For example, in the
MHD paradigm, jet acceleration is an intrinsically ineffi-
cient process that requires a few thousand gravitational
radii to reach equipartition of the energy fluxes (Komis-
sarov et al. ; Barkov and Komissarov ) (purely hy-
drodynamical mechanisms can however be far more effi-
cient (Aloy and Rezzolla )). Jet-environment interac-
tions like the prominent HST- feature of the radio-galaxy
M (Biretta et al. ; Stawarz et al. ; Asada and
Nakamura ) occur on scales of ∼  ×  gravitational
radii. Hence, for a self-consistent picture of accretion and
ejection, jet formation and recollimation due to interaction
with the environment [see, e.g., Mizuno et al. ()], nu-
merical simulations must capture horizon-scale processes,
as well as parsec-scale interactions with an overall spa-
tial dynamic range of ∼ . The computational cost of
such large-scale grid-based simulations quickly becomes
prohibitive. Adaptive mesh refinement (AMR) techniques
promise an effective solution for problems where it is nec-
essary to resolve small and large scale dynamics simulta-
neously.

Another challenging scenario is presented by radiatively
efficient geometrically thin accretion disks that mandate
extreme resolution in the equatorial plane in order to re-
solve the growth of MRI instabilities. Typically this is dealt
with by means of stretched grids that concentrate reso-
lution where needed (Avara et al. ; Sądowski ).
However, when the disk is additionally tilted with respect
to the spin axis of the BH (Fragile et al. ; McKinney et
al. ), lack of symmetry forbids such an approach. Here
an adaptive mesh that follows the warping dynamics of the
disk can be of great value. The list of scenarios where AMR
can have transformative qualities due to the lack of sym-
metries goes on, the modelling of star-disk interactions
(Giannios and Sironi ), star-jet interactions (Barkov

et al. ), tidal disruption events (Tchekhovskoy et al.
), complex shock geometries (Nagakura and Yamada
; Meliani et al. ), and intermittency in driven-
turbulence phenomena (Radice and Rezzolla ; Zrake
and MacFadyen ), will benefit greatly from adaptive
mesh refinement.

Over the past few years, the development of general-
relativistic numerical codes employing the  +  decompo-
sition of spacetime and conservative ‘Godunov’ schemes
based on approximate Riemann solvers (Rezzolla and Zan-
otti ; Font ; Martí and Müller ) have led
to great advances in numerical relativity. Many general-
relativistic hydrodynamic (HD) and MHD codes have
been developed (Hawley et al. ; Koide et al. ;
De Villiers and Hawley ; Gammie et al. ; Baiotti
et al. ; Duez et al. ; Anninos et al. ; Antón
et al. ; Mizuno et al. ; Del Zanna et al. ;
Giacomazzo and Rezzolla ; Radice and Rezzolla ;
Radice et al. ; McKinney et al. ; Etienne et al. ;
White and Stone ; Zanotti and Dumbser ; Meliani
et al. ) and applied to study a variety of problems in
high-energy astrophysics. Some of these implementations
provide additional capabilities that incorporate approxi-
mate radiation transfer [see, e.g., Sądowski et al. ();
McKinney et al. (); Takahashi et al. ()] and/or
non-ideal MHD processes [see, e.g., Dionysopoulou et
al. (); Foucart et al. ()]. Although these codes
have been applied to many astrophysical scenarios in-
volving compact objects and matter [for recent reviews
see, e.g., Martí and Müller (); Baiotti and Rezzolla
()], full AMR is still not commonly utilised and ex-
ploited [with the exception of Anninos et al. (); Zan-
otti et al. (); White and Stone ()]. BHAC attempts
to fill this gap by providing a fully-adaptive multidimen-
sional GRMHD framework that features state-of-the-art
numerical schemes.

Qualitative aspects of BH accretion simulations are
code-independent [see, e.g., Villiers and Hawley ();
Gammie et al. (); Anninos et al. ()], but quan-
titative variations raise questions regarding numerical
convergence of the observables (Shiokawa et al. ;
White and Stone ). In preparation for the upcoming
EHTC observations, a large international effort, whose Eu-
ropean contribution is represented in part by the Black-
HoleCam projectb (Goddi et al. ), is concerned with
forward modelling of the future event horizon-scale in-
terferometric observations of Sgr A* and M at submil-
limeter (EHTC; (Doeleman et al. )) and near-infrared
wavelengths (VLTI GRAVITY; (Eisenhauer et al. )).
To this end, GRMHD simulations have been coupled to
general-relativistic radiative transfer (GRRT) calculations
[see, e.g., Mościbrodzka et al. (); Dexter et al. ();
Chan et al. (); Gold et al. (); Dexter et al. ();
Mościbrodzka et al. ()]. In order to assess the credi-
bility of these radiative models, it is necessary to assess the
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quantitative convergence of the underlying GRMHD sim-
ulations. In order to demonstrate the utility of BHAC for
the EHTC science-case, we therefore validate the results
obtained with BHAC against the HARM3D code (Gammie
et al. ; Noble et al. ) and investigate the con-
vergence of the GRMHD simulations and resulting ob-
servables obtained with the GRRT post-processing code
BHOSS (Younsi et al. ).

The structure of the paper is as follows. In Section  we
describe the governing equations and numerical methods.
In Section  we show numerical tests in special-relativistic
and general-relativistic MHD. In Section  the results of
D and D GRMHD simulations of magnetised accret-
ing tori are presented. In Section  we briefly describe the
GRRT post-processing calculation and the resulting image
maps from the magnetised torus simulation shown in Sec-
tion . In Section  we present our conclusions and out-
look.

Throughout this paper, we adopt units where the speed
of light, c = , the gravitational constant, G = , and the
gas mass is normalised to the central compact object mass.
Greek indices run over space and time, i.e., (, , , ), and
Roman indices run over space only, i.e., (, , ). We as-
sume a (–, +, +, +) signature for the spacetime metric. Self-
gravity arising from the gas is neglected.

2 GRMHD formulation and numerical methods
In this section we briefly describe the covariant GRMHD
equations, introduce the notation used throughout this
paper, and present the numerical approach taken in our
solution of the GRMHD system. The computational in-
frastructure underlying BHAC is the versatile open-source
MPI-AMRVAC toolkit (Keppens et al. ; Porth et al.
).

In-depth derivations of the covariant fluid- and magneto-
fluid dynamical equations can be found in the textbooks
by (Landau and Lifshitz ; Weinberg ; Rezzolla
and Zanotti ). We follow closely the derivation of the
GRMHD equations by (Del Zanna et al. ). This is very
similar to the ‘Valencia formulation’, cf. (Rezzolla and Zan-
otti ) and (Antón et al. ). The general consid-
erations of the ‘ + ’ split of spacetime are discussed in
greater detail in (Misner et al. ; Gourgoulhon ;
Alcubierre ).

We start from the usual set of MHD equations in covari-
ant notation

∇μ

(
ρuμ

)
= ,

∇μTμν = , ()

∇μ
∗Fμν = ,

which respectively constitute mass conservation, conser-
vation of the energy-momentum tensor Tμν , and the ho-
mogeneous Faraday’s law. The Faraday tensor Fμν may be

constructed from the electric and magnetic fields Eα , Bα as
measured in a generic frame Uα as

Fμν = UμEν – UνEμ – (–g)–/ημνλδUλBδ , ()

where ημνλδ is the fully-antisymmetric symbol (see, e.g.,
(Rezzolla and Zanotti )) and g the determinant of the
spacetime four-metric. The dual Faraday tensor ∗Fμν :=

 (–g)–/ημνλδFλδ is then

∗Fμν = UμBν – UνBμ – (–g)–/ημνλδUλEδ . ()

We are interested only in the ideal MHD limit of vanishing
electric fields in the fluid frame uμ, hence

Fμνuν = , ()

such that the inhomogeneous Faraday’s law is not required
and electric fields are dependent functions of velocities
and magnetic fields. To eliminate the electric fields from
the equations it is convenient to introduce vectors in the
fluid frame and therefore we define the corresponding
electric and magnetic field four-vectors as

eμ := Fμνuν , bμ := ∗Fμνuν , ()

where eμ =  and we obtain the constraint uμbμ = . The
Faraday tensor is then

Fμν = –(–g)–/ημνλδuλbδ ,
∗Fμν = bμuν – bνuμ,

()

and we can write the total energy-momentum tensor in
terms of the vectors uμ and bμ alone (Anile ) as

Tμν = ρhtotuμuν + ptotgμν – bμbν . ()

Here the total pressure ptot = p + b/ was introduced, as
well as the total specific enthalpy htot = h + b/ρ . In addi-
tion, we define the scalar b := bνbν , denoting the square of
the fluid frame magnetic field strength as b = B – E.

2.1 3 + 1 split of spacetime
We proceed to split spacetime into + components by in-
troducing a foliation into space-like hyper-surfaces �t de-
fined as iso-surfaces of a scalar time function t. This leads
to the timelike unit vector normal to the slices �t (Alcu-
bierre ; Rezzolla and Zanotti )

nμ := –α∇μt, ()

where α is the so-called lapse-function. The four-velocity
nμ defines the frame of the Eulerian observer. If gμν is the
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metric associated with the four-dimensional manifold, we
can define the metric associated with each timelike slice as

γμν := gμν + nμnν . ()

This also allows us to introduce the spatial projection op-
erator

γ μ
ν := δμ

ν + nμnν ()

such that γ μ
ν nμ =  and through which we can project any

four-vector V μ (or tensor) into its temporal and spatial
components.

Introducing a coordinate system adapted to the foliation
�t , the line element is given in  +  form (Arnowitt et al.
) as

ds = –α dt + γij
(
dxi + β i dt

)(
dxj + β j dt

)
, ()

where the spatial vector βμ is called the shift vector. Writ-
ten in terms of coordinates, it describes the motion of co-
ordinate lines as seen by an Eulerian observer

xi
t+dt = xi

t – β i(t, xj)dt. ()

More explicitly, we write the metric gμν and its inverse gμν

as

gμν =
(

–α + βkβ
k βi

βj γij

)
,

gμν =
(

–/α β i/α

β j/α γ ij – β iβ j/α

)
.

()

From () we find the following useful relation between the
determinants of the -metric and -metric

(–g)/ = αγ /. ()

In a coordinate system specified by (), the four-velocity
of the Eulerian observer reads

nμ = (–α, i), nμ =
(
/α, –β i/α

)
. ()

It is easy to verify that this normalised vector is indeed or-
thogonal to any space-like vector on the foliation �t . Given
a fluid element with four-velocity uμ, the Lorentz factor
with respect to the Eulerian observer isc � := –uμnμ = αu

and we introduce the three-vectors

vi :=
γ i

μuμ

�
=

ui

�
+

β i

α
, vi := γijvj =

ui

�
, ()

which denote the fluid three-velocity.

In the following, purely spatial vectors (e.g., v = ) are
denoted by Roman indices. Note that � = ( – v)–/ with
v = vivi just as in special relativity.

Further useful three-vectors are the electric and mag-
netic fields in the Eulerian frame

Ei := Fiνnν = αFi, Bi := ∗Fiνnν = α∗Fi, ()

which differ by a factor α from the definitions used in
(Komissarov ; Gammie et al. ). Writing the gen-
eral Faraday tensor () in terms of quantities in the Eule-
rian frame, the ideal MHD condition () leads to the well
known relation

Ei = γ –/ηijkBjvk , ()

or put simply: E = B × v (here ηijk is the standard Levi-
Civita antisymmetric symbol). Combining () with (),
one obtains the transformation between bμ and Bμ as

bi =
Bμ + αbui

�
, b =

�(Bivi)
α

()

which enables the dual Faraday tensor () to be expressed
in terms of the Eulerian fields

∗Fμν =
Bμuν – Bνuμ

�
. ()

Equation () with the Faraday tensor in the form () yields
the final evolution equation for Bμ. The time component of
this leads to the constraint ∂i

√
γ Bi =  or put more simply:

∇ · B = . Following () we obtain the scalar b as

b =
B + α(b)

� =
B

� +
(
Bivi

), ()

where B := BiBi.
Using the spatial projection operator, the GRMHD Eqs.

() can be decomposed into spatial and temporal compo-
nents. We skip ahead over the involved algebra [see e.g.,
Del Zanna et al. ()] and directly state the final conser-
vation laws

∂t(
√

γ U) + ∂i
(√

γ Fi) =
√

γ S, ()

with the conserved variables U and fluxes Fi defined as

U =

⎡

⎢⎢
⎣

D
Sj
τ

Bj

⎤

⎥⎥
⎦ , Fi =

⎡

⎢⎢
⎣

V iD
αW i

j – β iSj
α(Si – viD) – β iτ

V iBj – BiV j

⎤

⎥⎥
⎦ , ()

where we define the transport velocity V i := αvi – β i.
Hence we solve for conservation of quantities in the Eu-
lerian frame: the density D := –ρuνnν , the covariant three-
momentum Sj, the rescaled energy density τ = U – Dd
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(where U denotes the total energy density as seen by
the Eulerian observer), and the Eulerian magnetic three-
fields Bj. The conserved energy density U is given by

U := Tμνnμnν

= ρh� – p +


(
E + B) ()

= ρh� – p +


[
B( + v) –

(
Bjvj

)]. ()

The purely spatial variant of the stress-energy tensor W ij

was introduced for example in (). It reads just as in spe-
cial relativity

W ij := γ i
μγ j

νTμν

= ρh�vivj – EiEj – BiBj

+
[

p +


(
E + B)

]
γ ij ()

= Sivj + ptotγ
ij –

BiBj

� –
(
Bkvk

)
viBj. ()

Correspondingly, the covariant three-momentum density
in the Eulerian frame is

Si := γ
μ
i nαTαμ = ρh�vi + ηijkγ

/EjBk ()

= ρh�vi + Bvi –
(
Bjvj

)
Bi, ()

as usual. For the sources S we employ the convenient Va-
lencia formulation without Christoffel symbols, yielding

S =

⎡

⎢
⎢
⎣



αW ik∂jγik + Si∂jβ

i – U∂jα

 W ikβ j∂jγik + W j

i ∂jβ
i – Sj∂jα



⎤

⎥
⎥
⎦ ()

which is valid for stationary spacetimes that are considered
for the remainder of this work (Cowling approximation).
Following the definitions () and (), all vectors and ten-
sors are now specified through their purely spatial variants
and thus apart from the occurrence of the lapse function α

and the shift vector β i, the equations take on a form iden-
tical to the special-relativistic MHD (SRMHD) equations.
This fact allows for a straightforward transformation from
the SRMHD physics module of MPI-AMRVAC into a full
GRMHD code.

In addition to the set of conserved variables U, knowl-
edge of the primitive variables P(U) is required for the cal-
culation of fluxes and source terms. They are given by

P =
[
ρ,�vi, p, Bi]. ()

While the transformation U(P) is straightforward, the in-
version P(U) is a non-trivial matter which will be dis-
cussed further in Section .. Note that just like in MPI-
AMRVAC, we do not store the primitive variables P but ex-
tend the conserved variables by the set of auxiliary vari-
ables

A = [�, ξ ], ()

where ξ := �ρh. Knowledge of A allows for quick trans-
formation of P(U). The issue of inversion then becomes a
matter of finding an A consistent with both P and U.

2.2 Finite volume formulation
Since BHAC solves the equations in a finite volume formu-
lation, we take the integral of Eq. () over the spatial ele-
ment of each cell

∫
dx dx dx

∫
∂t
(
γ /U

)
dx dx dx +

∫
∂i
(
γ /Fi)dx dx dx

=
∫

γ /S dx dx dx. ()

This can be written (cf. (Banyuls et al. )) as

∂t(Ū�V ) +
∫

∂V (x+�x/)
γ /F1 dx dx

–
∫

∂V (x–�x/)
γ /F1 dx dx

+
∫

∂V (x+�x/)
γ /F2 dx dx

–
∫

∂V (x–�x/)
γ /F2 dx dx

+
∫

∂V (x+�x/)
γ /F3 dx dx

–
∫

∂V (x–�x/)
γ /F3 dx dx

= S̄�V , ()

with the volume averages defined as

Ū :=
∫

γ /U dx dx dx

�V
,

S̄ :=
∫

γ /S dx dx dx

�V
,

()

and

�V =
∫

γ / dx dx dx. ()
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We next define also the ‘surfaces’ �Si and corresponding
surface-averaged fluxes

�Si
∂V (xi+�xi/) =

∫

∂V (xi+�xi/)
γ / dxj,j �=i, ()

and

F̄i
∂V (xi+�xi/) =

∫
∂V (xi+�xi/) γ

/Fi dxj,j �=i

�Si . ()

Considering that �V is assumed constant in time, this
leads to the evolution equation

∂tŪ = –


�V
[

F̄
�S|∂V (x+�x/) – F̄

�S|∂V (x–�x/)

+ F̄
�S|∂V (x+�x/) – F̄

�S|∂V (x–�x/)

+ F̄
�S|∂V (x+�x/) – F̄

�S|∂V (x–�x/)
]

+ S̄. ()

We aim to achieve second-order accuracy and represent
the interface-averaged flux, e.g., F̄

∂V (x+�x/), with the
value at the midpoint, change to an intuitive index nota-
tion F1

i+/,j,k , and then arrive at a semi-discrete equation
for the average state in the cell (i, j, k) as

dŪi,j,k

dt
= –


�Vi,j,k

[
F1�S|i+/,j,k – F1�S|i–/,j,k

+ F2�S|i,j+/,k – F2�S|i,j–/,k

+ F3�S|i,j,k+/ – F3�S|i,j,k–/
]

+ Si,j,k . ()

Here the source term Si,j,k is also evaluated at the cell
barycenter to second-order accuracy (Mignone ).
Barycenter coordinates x̄i are straightforwardly defined as

x̄i =
∫

γ /xi dx dx dx

�V
. ()

This finite volume form is readily solved with the MPI-
AMRVAC toolkit. For ease of implementation, we pre-
compute all static integrals yielding cell volumes �V , Sur-
faces �Si and barycenter coordinates. The integrations are
performed numerically at the phase of initialisation using
a fourth-order Simpson’s rule.

For the temporal update, we interpret the semi-discrete
form () as an ordinary differential equation in time for
each cell and employ a multi-step Runge-Kutta scheme to
evolve the average state in the cell Ūi,j,k , a procedure also
known as ‘method of lines’. At each sub-step, the point-
wise interface fluxes Fi are obtained by performing a lim-
ited reconstruction operation of the cell-averaged state Ū

to the interfaces (see Section .) and employing approxi-
mate Riemann solvers, e.g., HLL or TVDLF (Section .).

Several temporal update schemes are available: sim-
ple predictor-corrector, third-order Runge-Kutta (RK)
RK (Gottlieb and Shu ) and the strong-stability
preserving s-step, pth-order RK schemes SSPRK(s, p)
schemes: SSPRK(, ), SSPRK(, ) due to (Spiteri and Ru-
uth ).e

2.3 Metric data-structure
The metric data-structure is built to be optimal in terms of
storage while remaining convenient to use. Since the met-
ric and its derivatives are often sparsely populated, the data
is ultimately stored using index lists. For example, each el-
ement in the index list for the four-metric gμν holds the in-
dices of the non-zero element together with aFortran90
array of the corresponding metric coefficient for the grid
block. A summation over indices, e.g., ‘lowering’ can then
be cast as a loop over entries in the index-list only. For con-
venience, all elements can also be accessed directly over
intuitive identifiers which point to the storage in the index
list, e.g., m%g(mu,nu)%elem yields the grid array of the
gμν metric coefficients as expected. Similarly, the lower-
triangular indices point to the transposed indices in the
presence of symmetries. In addition, one block of zeros is
allocated in the metric data-structure and all zero elements
are set to point towards it. An overview of the available
identifiers is given in Table .

As a consequence, only  grid functions are required for
the Schwarzschild coordinates and  grid functions need
to be allocated in the Kerr-Schild (KS) case. This is still less
than half of the  grid functions which a brute-force ap-
proach would yield. The need for efficient storage manage-
ment becomes apparent when we consider that the metric
is required in the barycenter as well as on the interfaces,
thus multiplying the required grid functions by a factor of
four for three-dimensional simulations (yielding  grid
functions in the KS case).

In order to eliminate the error-prone process of im-
plementing complicated functions for metric derivatives,
BHAC can obtain derivatives by means of an accurate
complex-step numerical differentiation (Squire and Trapp
). This elegant method takes advantage of the Cauchy-
Riemann differential equations for complex derivatives
and achieves full double-precision accuracy, thereby avoid-
ing the stepsize dilemma of common finite-differencing
formulae (Martins et al. ). The small price to pay is
that at the initialisation stage, metric elements are pro-
vided via functions of the complexified coordinates. How-
ever, the intrinsic complex arithmetic of Fortran90 al-
lows for seamless implementation.

To promote full flexibility in the spacetime, we always
calculate the inverse metric γ ij using the standard LU de-
composition technique (Press et al. ). As a result,
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Table 1 Elements of the metric data-structure

Symbol Identifier Index list

gμν m%g(mu,nu) m%nnonzero, m%nonzero(inonzero)
α m%alpha -
β i m%beta(i) m%nnonzeroBeta, m%nonzeroBeta(inonzero)√

γ m%sqrtgamma -
γ ij m%gammainv(i,j) -
βi m%betaD(i) -
∂kγij m%dgdk(i,j,k) m%nnonzeroDgDk, m%nonzeroDgDk(inonzero)
∂jβ

i m%DbetaiDj(i,j) m%nnonzeroDbetaiDj, m%nonzeroDbetaiDj(inonzero)
∂jα m%DalphaDj(j) m%nnonzeroDalphaDj, m%nonzeroDalphaDj(inonzero)
0 m%zero -

GRMHD simulations on any metric can be performed af-
ter providing only the non-zero elements of the three-
metric γij(x, x, x), the lapse function α(x, x, x) and the
shift vector β i(x, x, x). As an additional convenience,
BHAC can calculate the required elements and their deriva-
tives entirely from the four-metric gμν(x, x, x, x).

2.4 Equations of state
For closure of the system ()-(), an equation of state (EOS)
connecting the specific enthalpy h with the remaining
thermodynamic variables h(ρ, p) is required (Rezzolla and
Zanotti ). The currently implemented closures are

• Ideal gas: h(ρ, p) =  +
γ̂

γ̂ – 
p
ρ

with adiabatic index γ̂ .

• Synge gas: h(�) =
K(�–)
K(�–)

, where the relativistic

temperature is given by � = p/ρ and Kn denotes the
modified Bessel function of the second kind. In fact,
we use an approximation to the previous expression
that does not contain Bessel functions [see Meliani et
al. (); Keppens et al. ()].

• Isentropic flow: Assumes an ideal gas with the
additional constraint p = κργ̂ , where the
pseudo-entropy κ may be chosen arbitrarily. This
allows one to omit the energy equation entirely and
only the reduced set P = {ρ, vj, Bj} is solved.

As long as h(ρ, p) is analytic, its implementation in BHAC
is straightforward.

2.5 Divergence cleaning and augmented Faraday’s law
To control the ∇ · B =  constraint on AMR grids, we
have adopted a constraint dampening approach custom-
arily used in Newtonian MHD (Dedner et al. ). In
this approach, which is usually referred as Generalized La-
grangian Multiplier (GLM) of the Maxwell equations (but
is also known as the ‘divergence-cleaning’ approach), we
extend the usual Faraday tensor by the scalar φ, such that
the homogeneous Maxwell equation reads

∇ν

(∗Fμν – φgμν
)

= –κnμφ, ()

and the scalar φ follows from contraction φ = (∗Fμν –
φgμν)nμnν . Naturally, for φ → , the usual set of Maxwell
equations is recovered. It is straightforward to show [see,
e.g., Palenzuela et al. ()] that () leads to a tele-
graph equation for the constraint violation parameter φ

which becomes advected at the speed of light and decays
on a timescale /κ . With the modification (), the time-
component of Maxwell’s equation now becomes an evolu-
tion equation for φ. After some algebra (see Appendix A),
we obtain

∂t
√

γφ + ∂i
[√

γ
(
αBi – φβ i)]

= –
√

γακφ –
√

γφ∂iβ
i

–


√

γφγ ijβk∂kγij +
√

γ Bi∂iα. ()

Equivalently, the modified evolution equations for Bi (see
Appendix B) read

∂t
(√

γ Bj) + ∂i
(√

γ
(
V iBj – V jBi – Biβ j))

= –
√

γ Bi∂iβ
j –

√
γαγ ij∂iφ. ()

Now Eq. () replaces the usual Faraday’s law and () is
evolved alongside the modified MHD system. Due to the
term ∂iφ on the right hand side of Eq. (), the new equa-
tion is non-hyperbolic. Hence, numerical stability can be
a more involved issue than for hyperbolic equations. We
find that the numerical stability of the system is enhanced
when using an upwinded discretisation for ∂iφ. Note that
Eqs. () and () are in agreement with (Dionysopoulou
et al. ) when accounting for ∂i

√
γ√

γ
= 

γ lm∂iγlm and tak-
ing the ideal MHD limit.

2.6 Flux-interpolated constrained transport
As an alternative to the GLM approach, the ∇ · B =  con-
straint can be enforced using a cell-centred version of Flux-
interpolated Constrained Transport (FCT) consistent with
the finite volume scheme used to evolve the hydrodynamic
variables. Constrained Transport (CT) schemes aim to
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keep to zero at machine precision the sum of the mag-
netic fluxes through all surfaces bounding a cell, and there-
fore (in the continuous limit) the divergence of the mag-
netic field inside the cell. In the original version (Evans
and Hawley ) this is achieved by evolving the magnetic
flux through the cell faces and computing the circulation
of the electric field along the edges bounding each face.
Since each edge appears with opposite signs in the time
update of two faces belonging to the same cell, the total
magnetic flux leaving each cell is conserved during evolu-
tion. The magnetic field components at cell centers, neces-
sary for performing the transformation from primitive to
conserved variables and vice-versa, are then found using
interpolation from the cell faces. (Toth ) showed that
it is possible to find cell centred variants of CT schemes
that go from the average field components at the cell cen-
ter at a given time to those one (partial) time step ahead in
a single step, without the need to compute magnetic fluxes
at cell faces. The CT variant known as FCT is particularly
well suited for finite volume conservative schemes as that
employed by BHAC, as it calculates the electric fields nec-
essary for the update as an average of the fluxes given by
the Riemann solver. In this way, the time update for its cell
centred version can be written using a form similar to ().
For example, for the update of the B̄ component, we ob-
tain

dB̄
i,j,k

dt
= –


�Vi,j,k

[
F∗�S|i,j+/,k – F∗�S|i,j–/,k

+ F∗�S|i,j,k+/ – F∗�S|i,j,k–/
]
, ()

where the modified fluxes in the x-direction are zero and
the remaining fluxes are calculated as

F∗�S|i,j–/,k

=
�x

i


(


F̄�S|i,j–/,k

�x
i

+
F̄�S|i+,j–/,k

�x
i+

+
F̄�S|i–,j–/,k

�x
i–

–
F̄�S|i–/,j,k

�yj
–

F̄�S|i–/,j–,k

�x
j–

–
F̄�S|i+/,j,k

�x
j

–
F̄�S|i+/,j–,k

�x
j–

)
. ()

The derivation of Eqs. () and () from the staggered
version with magnetic fields located at cell faces is given
in Appendix C. Since magnetic fields are stored at the cell
center and not at the faces, the divergence conserved by
the FCT method corresponds to a particular discretisa-

tion



�V ∗(∇ · B)|i+/,j+/,k+/

=
∑

l,l,l=,

[
(–)+l B̄�V

�x + (–)+l B̄�V
�x

+ (–)+l B̄�V
�x

]

i+l,j+l,k+l
, ()

where

�V ∗|i+/,j+/,k+/ =
∑

l,l,l=,

�V |i+l,j+l,k+l . ()

Equation () is closely related to the integral over the
surface of a volume containing eight cells in D (see Ap-
pendix D for the derivation), and it reduces to equation
() from (Toth ) in the special case of Cartesian co-
ordinates. As mentioned before, this scheme can maintain
∇ · B =  to machine precision only if it was already zero
at the initial condition. The corresponding curl operator
used to setup initial conditions is derived in Appendix D.

In its current form, BHAC cannot handle both con-
strained transport and AMR. The reason is that special
prolongation and restriction operators are required in
order to avoid the creation of divergence when refining
or coarsening. Due to the lack of information about the
magnetic flux on cell faces, the problem of finding such
divergence-preserving prolongation operators becomes
underdetermined. However, storing the face-allocated
(staggered) magnetic fluxes and applying the appropri-
ate prolongation and restriction operators requires a large
change in the code infrastructure on which we will report
in an accompanying work.

2.7 Coordinates
Since one of the main motivations for the development
of the BHAC code is to simulate BH accretion in arbitrary
metric theories of gravity, the coordinates and metric data-
structures have been designed to allow for maximum flex-
ibility and can easily be extended. A list of the currently
available coordinate systems is given in Table . In ad-
dition to the identifiers used in the code, the table lists
whether numerical derivatives are used and whether the
coordinates are initialised from the three-metric or the
four-metric. The less well-known spacetimes and coordi-
nates are described in the following subsection.

.. Modified Kerr-Schild coordinates
Modified KS coordinates were introduced by e.g., (McK-
inney and Gammie ) with the purpose of stretching
the grid radially and being able to concentrate resolution
in the equatorial region.
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Table 2 Coordinates available in BHAC

Coordinates Identifier Num. derivatives Init. gμν

Cartesian cart No No
Boyer-Lindquist bl No No
Kerr-Schild ks No No
Modified Kerr-Schild mks No No
Cartesian Kerr-Schild cks Yes Yes
Rezzolla & Zhidenko parametrization (Rezzolla and Zhidenko 2014) rz Yes No
Horizon penetrating Rezzolla & Zhidenko coordinates rzks Yes Yes
Hartle-Thorne (Hartle and Thorne 1968) ht Yes Yes

Figure 1 Modified Kerr-Schild coordinates. θ -grid stretching functions comparing the transcendental function ϑ (θKS) (solid red curves) with the
cubic approach (solid blue curves) for h = 0.9. We also give the respective derivatives dθ /dϑ (dashed).

The original coordinate transformation is equivalent to:

rKS(s) = R + es, ()

θKS(ϑ) = ϑ +
h


sin(ϑ), ()

where R and h are parameters which control, respectively,
how much resolution is concentrated near the horizon and
near the equator.

Unfortunately, the inverse of ϑ(θ ) is a transcenden-
tal equation that has to be solved numerically. To avoid
this complication and still capture the functionality of
the modified coordinates, we instead use the following θ -
transformation

θKS(ϑ) = ϑ +
hϑ

π (π – ϑ)(π – ϑ). ()

Now the solution to the cubic equation can be expressed
in closed-form, and the only real root reads

ϑ(θKS) =



π/

(
–

 √(π )/(h – )
R(θKS)

–
/ √R(θKS)

h
+  √π

)
, ()

where

R(θKS) =
[
h
(
–h

[
–hθ

KS + πhθKS

+ (h – )(πh + π )])/

+ (π – θKS)h]/. ()

This is compared with the original version () in Fig-
ure  and shows a good match between the two versions
of modified Kerr-Schild coordinates. The radial back-
transformation follows trivially as

s(rKS) = ln(rKS – R), ()

and the derivatives for the diagonal Jacobian are

∂srKS = es ()

∂ϑθKS =  + h + h
(
(ϑ/π ) – ϑ/π

)
. ()

With these transformations, we obtain the new metric
gMKS = JTgKSJ . Note that whenever the parameters h = 
and R =  are set, our MKS coordinates reduce to the
standard logarithmic Kerr-Schild coordinates.
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.. Rezzolla & Zhidenko parametrization
The Rezzolla-Zhidenko parameterisation (Rezzolla and
Zhidenko ) has been proposed to describe spherically-
symmetric BH geometries in metric theories of gravity. In
particular, using a continued-fraction expansion (Padé ex-
pansion) along the radial coordinate, deviations from gen-
eral relativity can be expressed using a small number of
coefficients. The line element reads

ds = –N(r) dt +
B(r)
N(r)

dr

+ r dθ + r sin θ dφ, ()

with N(r) and B(r) being functions of the radial coordi-
nate r. The radial position of the event horizon is fixed at
r = r >  which implies that N(r) = . Furthermore, the
radial coordinate is compactified by means of the dimen-
sionless coordinate

x :=  –
r

r
, ()

in which x =  corresponds to the position of the event
horizon, while x =  corresponds to spatial infinity.
Through this dimensionless coordinate, the function N
can be written as

N = xA(x), ()

where A(x) >  for  ≤ x ≤ . Introducing additional coef-
ficients ε, an, and bn, the metric functions A and B are then
expressed as follows

A(x) =  – ε( – x) + (a – ε)( – x)

+ Ã(x)( – x), ()

B(x) =  + b( – x) + B̃(x)( – x). ()

Here Ã and B̃ are functions describing the metric near the
event horizon and at spatial infinity. In particular, Ã and B̃
have rapid convergence properties, that is by Padé approx-
imants

Ã(x) =
a

 + ax
+ ax

+···

, B̃(x) =
b

 + bx
+ bx

+···

, ()

where a, a, a, . . . and b, b, b, . . . are dimensionless co-
efficients that can, in principle, be constrained from ob-
servations. The dimensionless parameter ε is fixed by the
ADM mass M and the coordinate of the horizon r. It mea-
sures the deviation from the Schwarzschild case as

ε =
M – r

r
= –

(
 –

M
r

)
. ()

It is easy to see that at spatial infinity (x = ), all coefficients
contribute to (), while at event horizon only the first two
terms remain, i.e.

Ã() = a, B̃() = b. ()

Given a number of coefficients, any spherical spacetime
can hence directly be simulated in BHAC. For example,
the coefficients in the Rezzolla-Zhidenko parametriza-
tion for the Johannsen-Psaltis (Johannsen and Psaltis )
metric and for Einstein-Dilaton BHs (García et al. )
have already been provided in (Rezzolla and Zhidenko
). Typically, expansion up to a, b yields sufficient nu-
merical accuracy for the GRMHD simulations. The first
simulations in the related horizon penetrating form of
the Rezzolla-Zhidenko parametrization are discussed in
(Mizuno et al. ).

2.8 Available reconstruction schemes
The second-order finite volume algorithm () requires
numerical fluxes centered on the interface mid-point.
As in any Godunov-type scheme [see e.g., Toro (),
Komissarov ()], the fluxes are in fact computed by
solving (approximate) Riemann problems at the interfaces
(see Section .). Hence for higher than first-order accu-
racy, the fluid variables need to be reconstructed at the in-
terface by means of an appropriate spatial interpolation.
Our reconstruction strategy is as follows. () Compute
primitive variables P̄ from the averages of the conserved
variables Ū located at the cell barycenter. () Use the re-
construction formulae to obtain two representations for
the state at the interface, one with a left-biased reconstruc-
tion stencil PL and the other with a right-biased stencil PR.
() Convert the now point-wise values back to their con-
served states UL and UR. The latter two states then serve
as input for the approximate Riemann solver.

A large variety of reconstruction schemes are available,
which can be grouped into standard second-order to-
tal variation diminishing (TVD) schemes like ‘minmod’,
‘vanLeer’, ‘monotonized-central’, ‘woodward’ and ‘koren’
[see Keppens et al. (), for details] and higher order
methods like the third-order methods ‘PPM’ (Colella and
Woodward ), ‘LIMO’ (Čada and Torrilhon ) and
the fifth-order monotonicity preserving scheme ‘MP’ due
to (Suresh and Huynh ). While the overall order of the
scheme will remain second-order, the higher accuracy of
the spatial discretisation usually reduces the diffusion of
the scheme and improves accuracy of the solution [see,
e.g., Porth et al. ()]. For typical GRMHD simulations
with near-evacuated funnel/atmosphere regions, we find
the PPM reconstruction scheme to be a good compromise
between high accuracy and robustness. For simple flows,
e.g., the stationary toroidal field torus discussed in Sec-
tion ., the compact stencil LIMO method is recom-
mended.
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2.9 Characteristic speed and approximate Riemann solvers
The time-update of BHAC proceeds in a dimensionally
unsplit manner, thus at each Runge-Kutta substep the
interface-fluxes in all directions are computed based on
the previous substep. The state is then advanced to the
next substep with the combined fluxes of the cell. To com-
pute these fluxes from the reconstructed conserved vari-
ables at the interface UL and UR, we provide two approx-
imate Riemann solvers: () the Rusanov flux, also known as
Total variation diminishing Lax-Friedrichs scheme
(TVDLF) which is based on the largest absolute value of
the characteristic waves normal to the interface ci, and
() the HLL solver (Harten et al. ), which is based on
the leftmost (ci

–) and rightmost (ci
+) waves of the charac-

teristic fan with respect to the interface. The HLL upwind
flux function for the conserved variable u ∈ U is calculated
as

Fi(u) =

⎧
⎪⎨

⎪⎩

Fi(UL); ci
– > 

Fi(UR); ci
+ < 

F̃ i(UL, UR); otherwise
()

where

F̃ i(UL, UR)

:=
ci

+Fi(UL) – ci
–Fi(UR) + ci

+ci
–(uR – uL)

ci
+ – ci

–
, ()

and we set in accordance with (Davis ): ci
– =

min(λL
i,–,λR

i,–), ci
+ = max(λL

+,λR
+).

The TVDLF flux is simply

Fi(u) =


[
Fi(UL) + Fi(UR)] –




ci(uR – uL) ()

with ci = max(|ci
–|, |ci

+|).
In addition to these two standard approximate Riemann

solvers, we also provide a modified TVDLF solver that
preserves positivity of the conserved density D. The algo-
rithm was first described in the context of Newtonian hy-
drodynamics by (Hu et al. ) and was successfully ap-
plied in GRHD simulations by (Radice et al. ). It takes
advantage of the fact that the first-order Lax-Friedrichs
flux Fi,LO(u) is positivity preserving under a CFL condition
CFL ≤ /. Hence the fluxes can be constructed by com-
bining the high order flux Fi,HO(u) (obtained e.g., by PPM
reconstruction) and Fi,LO(u) such that the updated den-
sity does not fall below a certain threshold.f Specifically,
the modified fluxes read

Fi(u) = θFi,HO(u) + ( – θ )Fi,LO(u), ()

where θ ∈ [, ] is chosen as a maximum value which en-
sures positivity of the cells adjacent to the interface (see

(Hu et al. ) for details of its construction). Note that
although we only stipulate the density be positive, the for-
mula () must be applied to all conserved variables u ∈ U.

In relativistic MHD, the exact form of the characteris-
tic wave speeds λ± involves solution of a quartic equation
[see, e.g., Anile ()] which can add to the computational
overhead. For simplicity, instead of calculating the exact
characteristic velocities, we follow the strategy of (Gam-
mie et al. ) who propose a simplified dispersion rela-
tion for the fast MHD wave ω = ak. As a trade-off, the
simplification can overestimate the wavespeed in the fluid
frame by up to a factor of , yielding a slightly more diffu-
sive behaviour. The upper bound a for the fast wavespeed
is given by

a = c
s + c

a – c
s c

a, ()

which depends on the usual sound speed and Alfvén speed

c
s = γ̂

p
ρh

, c
a =

b

ρh + b , ()

here given for an ideal EOS with adiabatic index γ̂ . As
pointed out by (Del Zanna et al. ), the  +  structure
of the fluxes leads to characteristic waves of the form

λi
± = αλ

′i
± – β i, ()

where λ
′i± is the characteristic velocity in the correspond-

ing special relativistic system (α → , β i → ).
For the simplified isotropic dispersion relation, the char-

acteristics can then be obtained just like in special relativis-
tic hydrodynamics [see, e.g., Font et al. (), Banyuls et
al. (), Keppens and Meliani ()]

λ
′i
± =

((
 – a)vi

±
√

a
(
 – v

)[(
 – va

)
γ ii –

(
 – a

)(
vi
)])

/(
 – va). ()

2.10 Primitive variable recovery
It is well-known that the nonlinear inversion P(U) is the
Achilles heel of any relativistic (M)HD code and sophisti-
cated schemes with multiple backup strategies have been
developed over the years as a consequence (e.g., Noble et
al. (), Faber et al. (), Noble et al. (), Eti-
enne et al. (), Galeazzi et al. (), Hamlin and New-
man ()). Here we briefly describe the methods used
throughout this work and refer to the previously men-
tioned references for a more detailed discussion.

.. Primary inversions
Two primary inversion strategies are available in BHAC.
The first strategy, which we denote by ‘D’, is a straight-



Porth et al. Computational Astrophysics and Cosmology  (2017) 4:1 Page 12 of 42

forward generalisation of the one-dimensional strategy de-
scribed in (van der Holst et al. ). It involves a non-
linear root finding algorithm which is implemented by
means of a Newton-Raphson scheme on the auxiliary vari-
able ξ . Once ξ is found, the velocity follows from ()

vi =
Si

(ξ + B)
+

Bi(BjSj)
ξ (ξ + B)

, ()

and we calculate the second auxiliary variable � = ( –
v)–/ so that ρ = D/�. The thermal pressure p then fol-
lows from the particular EOS in use (Section .). For ex-
ample, for an ideal EOS we have

p =
γ̂

γ̂ – 

(
ξ

� – ρ

)
. ()

For details of the consistency checks and bracketing, we
refer the interested reader to (van der Holst et al. ).

In addition to the D scheme, we have implemented the
‘DW’ method of (Noble et al. ; Del Zanna et al.
). The DW inversion simultaneously solves the non-
linear Eqs. () and the square of the three-momentum S,
following () by means of a Newton-Raphson scheme on
the two variables ξ and v. Among all inversions tested by
(Noble et al. ), the DW method was reported as the
one with the smallest failure rate. We find the same trend,
but also find that the lead of DW over D is rather minor
in our tests.

With two distinct inversions that might fail under dif-
ferent circumstances, one can act as a backup strategy for
the other. Typically we first attempt a DW inversion and
switch to the D method when no convergence is found.
The next layer of backup can be provided by the entropy
method as described in the next section.

.. Entropy switch
To deal with highly magnetised regions, Noble et al.
(); Sądowski et al. () introduced the advection
of entropy to provide a backup strategy for the primitive
variable recovery. Similar to Noble et al. (), Sądowski
et al. (), alongside the usual fluid equations, BHAC can
be configured to solve an advection equation for the en-
tropy S

∇μSuμ = , ()

where we define

S := p/ργ̂ –, ()

given the adiabatic index γ̂ . This leads to the evolution
equation

∂t
√

γ�S + ∂i
√

γ
(
αvi – β i)�S = , ()

for the conserved quantity �S. The primitive counterpart
is the actual entropy κ = p/ργ̂ , which can be recovered
via κ = �S/D. In case of failure of the primary inversion
scheme, using the advected entropy κ , we can attempt a
recovery of primitive variables which does not depend on
the conserved energy. Note that after the primitive vari-
ables are recovered from the entropy, we need to discard
the conserved energy and set it to the value consistent with
the entropy. On the other hand, after each successful re-
covery of primitive variables, the entropy is updated to
κ = p/ργ̂ , which is then advected to the next step. In addi-
tion, entropy-based inversion can be activated whenever
β = p/b ≤ – since the primary inversion scheme is
likely to fail in these highly magnetised regions. Tests of
the dynamic switching of the evolutionary equations are
described in Section .. In GRMHD simulations of BH ac-
cretion, the ‘entropy region’ is typically located in the BH
magnetosphere, which is strongly magnetised and the er-
ror due to missing shock dissipation is thus expected to be
small.

In the rare instances where the entropy inversion also
fails to converge to a physical solution, the code is normally
stopped. To force a continuation of the simulation, last re-
sort measures that depend on the physical scenario can be
employed. Often the simulation can be continued when
the faulty cell is replaced with averages of the primitive
variables of the neighbouring healthy cells as described in
(Keppens et al. ). In the GRMHD accretion simula-
tions described below, failures could happen occasionally
in the highly magnetised evacuated ‘funnel’ region close
to the outer horizon where the floors are frequently ap-
plied. We found that the best strategy is then to replace
the faulty density and pressure values with the floor val-
ues and set the Eulerian velocity to zero. Note that in or-
der to avoid generating spurious ∇ · B, the last resort mea-
sures should never modify the magnetic fields of the sim-
ulation.

2.11 Adaptive mesh refinement
The computational grid employed in BHAC is provided by
the MPI-AMRVAC toolkit and constitutes a fully adaptive
block based (oct-) tree with a fixed refinement factor of two
between successive levels. That is, the domain is first split
into a number of blocks with equal amount of cells (e.g., 

computational cells per block). Each block can be refined
into two (D), four (D) or eight (D) child-blocks with
an again fixed number of cells. This process of refinement
can be repeated ad libitum and the data-structure can be
thought of a forest (collection of trees). All operations on
the grid, for example time-update, IO and problem initial-
isation are scheduled via a loop over a space-filling curve.
We adopt the Morton Z-order curve for ease of implemen-
tation via a simple recursive algorithm.
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Currently, all cells are updated with the same global
time-step and hence load-balancing is achieved by cut-
ting the space-filling curve into equal sections that are
then distributed over the MPI-processes. The AMR strat-
egy just described is applied in various astrophysical codes,
for example codes employing thePARAMESH library (Mac-
Neice et al. ; Fryxell et al. ; Zhang and Mac-
Fadyen ), or the recent Athena++ framework [see,
e.g., White et al. ()]. Compared to a patch-based ap-
proach [see, e.g., Mignone et al. ()], the block based
AMR has several advantages: () well-defined boundaries
between neighbouring grids on different levels, () data
is uniquely stored and updated, thus no unnecessary in-
terpolations are performed, and () simple data-structure,
e.g., straightforward integer arithmetic can be used to lo-
cate a particular computational block. For in-depth imple-
mentation details such as refinement/prolongation opera-
tions, indexing and ghost-cell exchange, we refer to (Kep-
pens et al. ). Prolongation and restriction can be used
on conservative variables or primitive variables. Typically
primitive variables are chosen to avoid unphysical states
which can otherwise result from the interpolations in con-
served variables. The refinement criteria usually adapted
is the Löhner’s error estimator (Löhner ) on physical
variables. It is a modified second derivative, normalised by
the average of the gradient over one computational cell.
The multidimensional generalization is given by

Eiii =
((∑

p

∑

q

(
∂u

∂xp∂xq
�xp�xq

))

/(∑

p

∑

q

[(∣∣
∣∣
∂u
∂xp

∣∣
∣∣
ip+/

+
∣∣
∣∣
∂u
∂xp

∣∣
∣∣
ip–/

)
�xp

+ fwave
∂|u|

∂xp∂xq
�xp�xq

]))/

. ()

The indices p, q run over all dimensions p, q = , . . . , ND.
The last term in the denominator acts as a filter to prevent
refinement of small ripples, where fwave is typically cho-
sen of order –. This method is also used in other AMR
codes such as FLASH (Calder et al. ), RAM (Zhang and
MacFadyen ),PLUTO (Mignone et al. ) andECHO
(Zanotti et al. ).

3 Numerical tests
3.1 Shock tube test with gauge effect
The first code test is considered in flat spacetime and
therefore no metric source terms are involved. Herein
we perform one-dimensional MHD shock tube tests with
gauge effects by considering gauge transformations of the
spacetime. Shock tube tests are well-known tests for code
validation and emphasise the nonlinear behaviour of the
equations, as well as the ability to resolve discontinuities

Table 3 Shock tube with gaugeeffect setups

Case α β i γ11 γ22 γ33

A 1 (0, 0, 0) 1 1 1
B 2 (0, 0, 0) 1 1 1
C 1 (0.4, 0, 0) 1 1 1
D 1 (0, 0, 0) 4 1 1
E 1 (0, 0, 0) 1 4 1
F 2 (0.4, 0, 0) 4 9 1

in the solutions [see, e.g., Antón et al. (), Del Zanna
et al. ()].

The initial condition is given as

(
ρ, p, Bx, By) =

{
(, , ., ) x < ,
(., ., ., –) x > ,

()

and all other quantities are zero. In order to check whether
the covariant fluxes are correctly implemented, we use dif-
ferent settings for the flat spacetime as detailed in Table .

In the simulations, an ideal gas EOS is employed with
an adiabatic index of γ̂ = . The D problem is run on
a uniform grid in x-direction using , cells spanning
over x ∈ [–/, /]. The simulations are terminated at t =
.. For the spatial reconstruction, we adopt the second
order TVD limiter due to Koren (Koren ). Further-
more, RK timeintegration is used with Courant number
set to ..

Case A is the reference solution without modification of
fluxes due to the three-metric, lapse or shift.g By means
of simple transformations of flat-spacetime, all other cases
can be matched with the reference solution. Case B will co-
incide with solution A if B is viewed at t/ = .. Case C will
agree with case A when it is shifted in positive x-direction
by δx = βxt = .. For case D, we rescale the domain as
x ∈ [–/, /] and initialise the contravariant vectors as
B′x = Bx/. The state at t = . should agree with case A
when the domain is multiplied by the scale factor hx = .
For case E we initialise B′y = By/ and case F is initialised
similarly as B′x = Bx/, B′y = By/.

In general, all cases agree very well with the rescaled so-
lution. To give an example, Figure  shows the rescaled
simulation results of case F compared to the reference
solution of case A. This test demonstrates the shock-
capturing ability of the MHD code and enables us to con-
clude that the calculation of the covariant fluxes has been
implemented correctly.

3.2 Boosted loop advection
In order to test the implementation of the GLM-GRMHD
system, we perform the advection of a force-free flux-tube
with poloidal and toroidal components of the magnetic
field in a flat spacetime.
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Figure 2 Shock tube with gauge effects. 1D plots of density ρ , gas pressure p, Lorentz factor � , velocity components vx and vy , and the
y-component of the magnetic field for the shock tube test at t = 0.4. The reference solution of case A is shown as a solid black line and the rescaled
solution of case F is overplotted as red squares.

The initial equilibrium configuration of a force-free flux-
tube is given by a modified Lundquist tube [see e.g., Gour-
gouliatos et al. ()], where we avoid sign changes of
the vertical field component Bz with the additive con-
stant C = .. Pressure and density are initialized as con-
stant throughout the simulation domain. The initial pres-
sure value is obtained from the central plasma-beta β =
B()/p, where B is the magnetic field in the co-moving
system. The density is set to ρ = p/ yielding a relativis-
tic hot plasma. Consequently, an adiabatic index γ = /
is used. We set β = ., which results in a high magneti-
sation σ = B()/(ρc + p) � . The equations for the
magnetic field for r <  read

Bφ(r) = J(αtr), ()

Bz(r) =
√

J(αtr) + C, ()

and

Bφ(r) = , ()

Bz(r) =
√

J(αt) + C, ()

otherwise, where J and J are Bessel functions of zeroth
and first order respectively and the constant αt � . is
the first root of J.

This configuration is then boosted to the frame moving
at velocity v =

√
(–vc, –vc, ) and we test values of vc be-

tween .c and .c.

Standard Lorentz transformation rules result in

r = r′ + (� – )
(

r′ · n
)

n – �t′vcn,

B′ = �B –
�

� + 
β(β · B),

()

where t′ can be set to zero and where we assumed a vanish-
ing electric field in the co-moving system. Therefore rela-
tivistic length contraction gives the loop a squeezed ap-
pearance. A simulation domain (x, y) ∈ [–, ] at a base res-
olution of Nx × Ny =  is initialised with an additional
three levels of refinement. We advect the loop for one pe-
riod (P = 

√
/v) across the domain where periodic bound-

ary conditions are used.
The advection over the coordinates can be counteracted

by setting the shift vector appropriately, i.e. β = –v. This
is an important consistency check of the implementation.
Figure  shows the initial and final states of the force-free
magnetic flux-tube advected for one period and for the
case with spacetime shifted against the advection velocity.
The advected and counter-shifted cases are in good agree-
ment, with only the truly advected case being slightly more
diffused, the effect of which is reflected in the activation of
more blocks on the third AMR level.

To investigate the numerical accuracy the L and L∞
norms of the out-of-plane magnetic field component Bz ,
as well as the divergence of magnetic field between the ini-
tial state and the simulation at a time after one advection
period with different resolutions as seen in Figure  are
checked. The error norms from analytically known solu-
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Figure 3 Boosted loop advection. Force-free magnetic loop with diagonal boost velocity |v| = 0.5c. Top: No shift, the loop is advected for one
period. Bottom: The shift vector just opposes the (diagonal) advection velocity, |v| = 0.5, hence the loop remains stationary with respect to the grid.
Base resolution is 642 cells with a total of three grid levels. The color shows the strength of the out-of-plane field component Bz and white lines are
in-plane field lines of (Bx ,Bz ). Blocks containing 82 cells are indicated.

tions u∗ are defined as

L(u) =


Ncells

∑

i,j,k

∣∣
∣∣ūi,j,k

–


�Vi,j,k

∫

Vi,j,k

u∗√γ dx dx dx
∣∣∣
∣, ()

L∞(u) = maxi,j,k

∣∣
∣∣ūi,j,k

–


�Vi,j,k

∫

Vi,j,k

u∗√γ dx dx dx
∣∣
∣∣, ()

where the summation, respectively maximum operation,
includes all cells in the domain and the integrals are per-
formed over the volume of the cell �Vi,j,k . In this sense, the
reported errors correspond to the mean and maximal er-
ror in the computational domain. We should note that for
the test of convergence, we use a uniform grid and choose

v = .
√

.(, , ), β =
√

.(, , ) resulting in an advec-
tion in direction of the upper-left diagonal. A TVD ‘Koren’
limiter is chosen. As expected, the convergence is second
order for all cases.

3.3 Magnetised spherical accretion
A useful stress test for the conservative algorithm in a
general-relativistic setting is spherical accretion onto a
Schwarzschild BH with a strong radial magnetic field
(Gammie et al. ). The steady-state solution is known
as the Michel accretion solution (Michel ) and repre-
sents the extension to general relativity of the correspond-
ing Newtonian solution by (Bondi ). The steady-state
spherical accretion solution in general relativity is de-
scribed in a number of works [see, e.g., Hawley et al. (),
Rezzolla and Zanotti ()]. It is easy to show that the so-
lution is not affected when a radial magnetic field of the
form Br ∝ γ –/ is added (De Villiers and Hawley ).
This test challenges the robustness of the code and of the
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Figure 4 Error quantification: Boosted loop advection. Error of the out-of-plane magnetic field component Bz (left) and divergence of B (right).
For this test, we chose v = 0.5

√
0.5(1, 1, 0) and β =

√
0.5(1, 0, 0), resulting in an advection in the direction of the upper-left diagonal.

Figure 5 Profiles in the magnetised Bondi flow. Magnetized Bondi flow at t = 100 M in MKS coordinates with σ = 103 at the inner edge of the
domain. The black solid curve indicates the initial exact solution. We show two realisations with resolution Nr = 100. Black crosses are with the
standard treatment for the inversion. Red crosses switch to the entropy evolution at β ≤ 10–2 (here in the middle of the domain). In particular, the
error in the radial three-velocity vr decreases when switching to the entropy evolution.

inversion procedure P(U) in particular. The calculation of
the initial condition follows that outlined in (Hawley et al.
). Here, we parametrize the field strength via σ = b/ρ
at the inner edge of the domain (r = . M). The simulation
is setup in the equatorial plane using MKS coordinates cor-
responding to a domain of rKS ∈ [., ] M. The analytic
solution remains fixed at the inner and outer radial bound-

aries. We run two cases, case  with magnetisation up to
σ =  and case  with a very high magnetisation reaching
up to σ = . Since the problem is only D, the constraint
∇ · B =  has a unique solution which gets preserved via
the FCT algorithm.

Figure  illustrates the profiles for σ =  and two in-
version strategies: DW (black +) and DW with entropy
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Figure 6 Error quantification: magnetised Bondi flow. Error of density ρ in the highly magnetised Bondi flow: σ = 103 (left) and σ = 104 (right).
The black data points are obtained with the standard 2D inversion and the red datapoints switch to the entropy inversion at β ≤ 10–2. One can see
that both recipes are convergent with the expected order and that the error in the entropy strategy is decreased by roughly a factor of two.

switching in regions of high magnetization b/p > 
(red ×). With the exception of the radial three-velocity
near the BH horizon (r ≤  M), in both cases the simu-
lations maintain well the steady-state solution.h Compar-
ing theses results with and without entropy switching, the
entropy strategy actually keeps the solution closer to the
steady-state solution (solid black curves) even though
the change of inversion strategy occurs in the middle of
the domain, r � .

The errors (L and L∞ norms) for the four cases are
shown in Figure . Again, the second-order accuracy of
the algorithm is recovered. Using the entropy strategy in-
creases the numerical accuracy by around a factor of two
and we suggest its use in the highly magnetised regime of
BH magnetospheres.

3.4 Magnetised equilibrium torus
As a final validation of the code in the GRMHD regime,
we perform the simulation of a magnetised equilibrium
torus around a spinning BH. A generalisation of the steady-
state solution of the standard hydrodynamical equilibrium
torus with constant angular momentum [see, e.g., Fish-
bone and Moncrief (), Hawley et al. (), Font and
Daigne ()] to MHD equilibria with toroidal magnetic
fields was proposed by (Komissarov ). This steady-
state solution is important since it constitutes a rare case
of a non-trivial analytic solution in GRMHD.i

For the initial setup of the equilibrium torus, we adopt
a particular relationship ω = ω(p), where ω = ρh is the
fluid enthalpy and ω̃ = ω̃(p̃m), where p̃m = Lpm, ω̃ = Lω,
pm = b/ is the magnetic pressure, and L = gtφgtφ – gttgφφ .
From these relationships, thermal and magnetic pressures
are described as

p = Kωκ , ()

p̃m = Kmω̃η. ()

The analytical solutions can be constructed from

W – Win +
κ

κ – 
p
ω

+
η

η – 
pm

ω
= , ()

for the introduced total potential W , where W = ln |ut|.
The centre of the torus is located at (rc,π/). At this point,
we parametrize the magnetic field strength in terms of the
pressure ratio

βc = pg(rc,π/)/pm(rc,π/). ()

The gas pressure and magnetic pressure at the centre of
the torus are given by

pc = ωc(Win – Wc)
(

κ

κ – 
+

η

η – 

βc

)–

,

pmc = pc/βc.
()

From these, the constants K and Km for barotropic fluids
are obtained.

The magnetic field distribution is given by the distribu-
tion of magnetic pressure pm. From the consideration of a
purely toroidal magnetic field one obtains

bφ =
√

pm/A,

bt = �bφ ,
()

where A = gφφ + lgtφ + lgtt and � := –uφ/ut is the specific
angular momentum.

We perform D simulations using logarithmic KS co-
ordinates with h =  and R = . The simulation domain
is θ ∈ [,π ], rKS ∈ [.rh,  M], where rh is the (outer)
event horizon radius of the BH. The BH has the dimen-
sionless spin parameter a = .. For simplicity, we set
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the two indices to the same value of κ = η = / and
also set the adiabatic index of the adopted ideal EOS to
γ = /. The remaining parameters are listed in the Ta-
ble .

Initially, the velocity of the atmosphere outside of the
torus is set to zero in the Eulerian frame, with density
and gas pressure set to very small values of ρ = ρminr–/

BL ,
p = pminr–/

BL with ρmin = – and pmin = –. It is im-
portant to note that the atmosphere is free to evolve and
only densities and pressures are floored according to the
initial state. In the simulations we use the HLL approxi-
mate Riemann solver, third order LIMO reconstruction,
two-step time update, and a CFL number of .. We im-
pose outflow conditions on the inner and outer bound-
aries of the radial direction and reflecting boundary con-
ditions in the θ direction. As the magnetic field is purely
toroidal, and will remain so during the time-evolution of
this axisymmetric case, no particular ∇ · B =  treatment
is used.

The top panels of Figure  show the density distribution
at the initial state and at t =  M, as well as the plasma
beta distribution at t =  M. The rotational period of the
disk centre is tr =  M. The initial torus configuration is
well maintained after several rotation period. For a quali-
tative view of the simulations, the D radial and azimuthal

Table 4 Parameters for the MHD equilibrium torus test

Case l0 rc Win Wc ωc βc

A 2.8 4.62 –0.030 –0.103 1.0 0.1

distributions of the density are shown in the lower two
panels in Figure  with different grid resolutions. All but
the low resolution case are visually indistinguishable from
the initial condition in the bottom-left panel, showing ρ –r
with a linear scale. Since the atmosphere is evolved freely,
small density waves propagate in the ambient medium of
the torus, as seen in the ρ – θ cut. This does not adversely
affect the equilibrium solution in the bulk of the torus
however. Error quantification (L and L∞) is provided in
Figure . The second-order properties of the numerical
scheme are well recovered.

3.5 Differences between FCT and GLM
Having implemented two methods for divergence control,
we took the opportunity to compare the results of simula-
tions using both methods. We analysed three tests: a rel-
ativistic Orszag-Tang vortex, magnetised Michel accre-
tion, and magnetised accretion from a Fishbone-Moncrief
torus. Although much less in-depth, this comparison is in
the same spirit as those performed in previous works in
non-relativistic MHD (Toth ; Balsara and Kim ;
Mocz et al. ). The well-known work by (Toth )
compares seven divergence-control methods, including
an early non-conservative divergence-cleaning method
known as the eight-wave method (Powell ), and three
CT methods, finding that FCT is among the three most
accurate schemes for the test problems studied. In (Bal-
sara and Kim ), three divergence-cleaning schemes
and one CT scheme were applied to the same test prob-
lem of supernova-induced MHD turbulence in the inter-

Figure 7 Evolution of the magnetised Komissarov-Torus. Top: qualitative view of the torus evolution at a resolution of Nr = Nθ = 400. The spatial
scale is given in units of M. Left: Initial rest-frame density distribution, center: density at t = 200 M, right: plasma β parameter at t = 200 M. Bottom:
density slices through the torus at t = 100 M for constant θ = π /2 (left) and r = 5 (right).
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Figure 8 Error quantification: magnetised Komissarov-Torus.
Error of the density ρ in the strongly-magnetised Komissarov torus,
comparing the solution at t = 60 M with the exact solution. The
second-order behaviour of the numerical scheme is well recovered.

stellar medium. It was found that the three divergence-
cleaning methods studied suffer from, among other prob-
lems, spurious oscillations in the magnetic energy, which
is attributed to the non-locality introduced by the loss
of hyperbolicity in the equations. Finally, in (Mocz et al.
), a non-staggered version of CT adapted to a mov-
ing mesh is compared to the divergence-cleaning Powell
scheme (Powell et al. ), an improved version of the
eight-wave method. They observe greater numerical sta-
bility and accuracy, and a better preservation of the mag-
netic field topology for the CT scheme. In their tests, the
Powell scheme suffers from an artificial growth of the mag-
netic field. This is explained to be a result of the scheme
being non-conservative.

.. Orszag-Tang vortex
The Orszag-Tang vortex (Orszag and Tang ) is a com-
mon problem that can be used to test MHD codes for vi-
olations of ∇ · B. The relativistic version presented here
was performed in D using Cartesian coordinates in a
 × -resolution domain of π × π length units with
periodic boundary conditions, and evolved for  time
units (c = ). The equation of state was chosen to be that
of an ideal fluid with γ̂ = / and the initial conditions
were set to ρ = ., p = ., vx = –. sin y, vy = . sin x,
Bx = – sin y and By = sin x. Snapshots of the evolution are
shown in Figure .

As can be seen in Figures  and , the general behaviour
in both cases is quite similar qualitatively, with only slight
differences at specific locations. For instance, when com-
pared to GLM, FCT exhibited higher and sharper maxima
for the magnitude of the magnetic field. In a similar fash-
ion, some fine features in the Lorentz factor that can be
seen in Figure  for FCT appear to be smeared out when
using GLM, giving a false impression of symmetry under
◦ rotations, while the actual symmetry of the problem
is under ◦ rotations. This may be an evidence of FCT
being less diffusive than GLM.

.. Spherical accretion
We tested the ability of both methods to preserve a station-
ary solution by evolving a magnetised Michel accretion in
D, as shown in Figure . We employed spherical MKS
coordinates (see Section ..), Nr × Nθ =  ×  reso-
lution, and a domain with r ∈ [. M,  M] and θ ∈ [,π ].
The fluid obeyed an ideal equation of state with γ̂ = /
and the sonic radius was located at rc = , and the magnetic
field was normalised so that the maximum magnetisation
was σ = . We repeated the numerical experiment of sec-
tion Section ., now in D. As shown in Figure , nu-
merical artefacts start to become noticeable at these later
times. For instance, with these extreme magnetisations,
for GLM we observe spurious features near the poles at
θ =  and θ = π , as well as deviations in the velocity field
near the outer boundary r =  M. The polar region is of
special interest for jet simulations, where the divergence-
control method must be robust enough to interplay with
the axial boundary conditions. The bottom of Figure 
shows the profiles of several quantities at θ = π/. Both
divergence-control methods produce an excellent agree-
ment between the solution at different times in the equa-
torial region. The rightmost column in the bottom of Fig-
ure  shows the relative errors in the radial component of
the magnetic field for each method. The errors for FCT are
not only one order of magnitude lower than for GLM, but
also behave differently, remaining at the same level near
the more-magnetised inner region instead of growing as
seen for GLM.

.. Accreting torus
To compare both methods in a setting closer to our
intended scientific applications, we simulated accretion
from a magnetised perturbed Fishbone-Moncrief torus
around a Kerr BH with M =  and a = .. We em-
ployed modified spherical MKS coordinates as described
in Section .. and a domain where r ∈ [., ] and
θ ∈ [,π ] with a resolution of Nr × Nθ =  × , and
evolved the system until t = , M. At the radial bound-
aries, we imposed noinflow boundary conditions while at
the boundaries with the polar axis we imposed symmet-
ric boundary conditions for the scalar variables and the
radial vector components and antisymmetric boundary
conditions for the azimuthal and polar components. In
the BHAC code, noinflow boundary conditions are im-
plemented via continuous extrapolation of the primitive
variables and by replacing the three-velocity with zero in
case inflowing velocities are present in the solution. The
fluid obeyed an ideal equation of state with γ̂ = /. The
inner edge of the torus was located at rin = . and the
maximum density was located at rmax = .. The initial
magnetic field configuration consisted of a single loop with
Aφ ∝ (ρ/ρmax – ρcut) and zero for ρ < ρcut = .. To simu-
late vacuum, the region outside the torus was filled with a
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Figure 9 Relativistic Orszag-Tang vortex: in-plane quantities. Relativistic Orszag-Tang vortex. Left column: small differences can be observed in
this snapshot of the Lorentz factor at t = 5.0. Some features that appear when using CT are flattened when using GLM, possibly due to a greater
diffusivity of the latter.Middle column: final snapshot of BiBi . Good agreement between the two methods can be seen, except at some extreme
points. Right column: violation of ∇ · B = 0.

Figure 10 Relativistic Orszag-Tang vortex: horizontal cuts. Relativistic Orszag-Tang vortex: cuts at y = π /2 and t = 10.0 of the density ρ (left) and
the magnitude of the magnetic field |B| (right). While for ρ there is in general a good agreement, FCT tends to produce higher maxima for the
magnetic field.

tenuous atmosphere as is customarily done in these types
of simulation. In this case, the prescription for the atmo-
sphere was ρatm = ρminr–/ and patm = pminr–/, where
ρmin = – and pmin = / × –. A qualitative difference
can be seen even at early times of the simulation. The two
upper panels of Figure  show a snapshot of the simu-

lation at t =  M using both GLM and FCT. For GLM
some of the magnetic field has diffused out of the orig-
inal torus, magnetising the atmosphere. This artefact is
visible for GLM from almost the beginning of the simula-
tion (t ≈  M), while for FCT it is minimal. Even though
this particular artefact is not of crucial importance for the
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Figure 11 Magnetised Bondi flow: comparing FCT and GLM. Top: logarithmic density and streamlines in 2D magnetised Michel accretion at
times t = 0 M (left) and t = 100 M using GLM (centre) and FCT (right). The horizon is marked by the black line at r = 2. Bottom: profiles at θ = π /2 of,
from left to right, radial 3-velocity, density and radial magnetic field at t = 0 M (blue circles) and t = 100 M (red line) using GLM (upper) and FCT
(lower). The last column shows the relative difference between the magnetic field at t = 100 M and at the initial condition.

subsequent dynamics of the simulation, this points to a
higher inclination of GLM to produce spurious magnetic
field structures. At later times (bottom panels of Figure ),
the most noticeable difference is the smaller amount of
turbulent magnetic structures and the bigger plasma mag-
netisation inside the funnel in FCT, as compared to GLM.
This latter difference indicates that the choice of technique
to control ∇ · B may have an effect on the possibility of jet
formation in GRMHD simulations, although this specific
effect was not extensively studied.

To summarise this small section on the comparison be-
tween both divergence-control techniques, we found from
the three tests performed that FCT seems to be less dif-
fusive than GLM, is able to preserve for a longer time
a stationary solution, and seems to create less spurious
structures in the magnetic field. However, it still has the
inconvenient property that it is not possible to implement
a cell-entered version of it whilst fully incorporating AMR.
As mentioned previously, we are currently working on a

staggered implementation adapted to AMR, and this will
be described in a separate work.

4 Torus simulations
4.1 Initial conditions
We consider a hydrodynamic equilibrium torus threaded
by a weak magnetic field loop. The particular equilibrium
torus solution with constant angular momentum was first
presented by Fishbone and Moncrief () and Kozlowski
et al. () and is now a standard test for GRMHD sim-
ulations [see, e.g., Font and Daigne (), Zanotti et al.
(), Antón et al. (), Rezzolla and Zanotti (),
White et al. ()]. To facilitate cross-comparison, we set
the initial conditions in the torus close to those adopted
by Shiokawa et al. (), White et al. (). Hence the
spacetime is a Kerr BH with dimensionless spin parameter
a = .. The inner radius of the torus is set to rin =  M
and the density maximum is located at rmax =  M, where
radial and azimuthal positions refer to Boyer-Lindquist co-
ordinates. With these choices, the orbital period of the
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Figure 12 Magnetised torus: comparing FCT and GLM. Magnetised torus: plasma β at t = 20 M (top) and density and magnetic field lines
t = 2,000 M (bottom) using GLM (left) and FCT (right).

torus at the density maximum becomes T =  M. We
adopt an ideal gas EOS with an adiabatic index of γ̂ = /.
A weak single magnetic field loop defined by the vector po-
tential

Aφ ∝ max(ρ/ρmax – ., ), ()

is added to the stationary solution. The field strength is set
such that pmax/b

max = , where global maxima of pres-

sure pmax and magnetic field strength b
max do not neces-

sarily coincide. In order to excite the MRI inside the torus,
the thermal pressure is perturbed by % white noise.

As with any fluid code, vacuum regions must be avoided
and hence we apply floor values for the rest-mass density
(ρfl = –r–/) and the gas pressure (pfl = / × –r–/).
In practice, for all cells which satisfy ρ ≤ ρfl we set ρ = ρfl,
in addition if p ≤ pfl, we set p = pfl.
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The simulations are performed using horizon pene-
trating logarithmic KS coordinates (corresponding to our
set of modified KS coordinates with h =  and R = ).
In the D cases, the simulation domain covers rKS ∈
[.rh, , M] and θ ∈ [,π ], where rh � . M. In
the D cases, we slightly excise the axial region θ ∈
[.π , .π ] and adopt φ ∈ [, π ]. We set the boundary
conditions in the horizon and at r = , M to zero gra-
dient in primitive variables. The θ -boundary is handled as
follows: when the domain extends all the way to the poles
(as in our D cases), we adopt ‘hard’ boundary conditions,
thus setting the flux through the pole manually to zero. For
the excised cone in the D cases, we use reflecting ‘soft’
boundary conditions on primitive variables.

The time-update is performed with a two-step predic-
tor corrector based on the TVDLF fluxes and PPM recon-
struction. Furthermore, we set the CFL number to . and
use the FCT algorithm. Typically, the runs are stopped af-
ter an evolution for t = , M, ensuring that no signal
from the outflow boundaries can disturb the inner regions.
To check convergence, we adopt the following resolutions:
Nr × Nθ ∈ { × ,  × , , × } in the D
cases and Nr × Nθ × Nφ ∈ { ×  × ,  ×  ×
,  ×  × ,  ×  × } in the D runs. In
the following, the runs are identified via their resolution in
θ -direction. For the purpose of validation, we ran the D
cases also with the HARM3D code (Noble et al. ).j

To facilitate a quantitative comparison, we report radial
profiles of disk-averaged quantities similar to Shiokawa et
al. (), White et al. (), Beckwith et al. (). For a
quantity q(r, θ ,φ, t), the shell average is defined as

〈
q(r, t)

〉
:=

∫ π


∫ θmax
θ min q(r, θ ,φ, t)√–g dφ dθ
∫ π


∫ θmax
θ min

√–g dφ dθ
, ()

which is then further averaged over a given time interval to
yield 〈q(r)〉 (note that we omit the weighting with the den-
sity as done by Shiokawa et al. (), White et al. ()).
The limits θmin = π/, θmax = π/ ensure that atmosphere
material is not taken into account in the averaging. The
time-evolution is monitored with the accretion rate Ṁ and
the magnetic flux threading the horizon φB

Ṁ :=
∫ π



∫ π


ρur√–g dθ dφ, ()

φB :=



∫ π



∫ π



∣
∣Br∣∣√–g dθ dφ, ()

where both quantities are evaluated at the outer hori-
zon rh.

4.2 2D results
Figure  illustrates the qualitative time evolution of the
torus by means of the rest-frame density ρ , plasma-β and

the magnetisation σ = b/ρ . After t �  M, the MRI-
driven turbulence leads to accretion onto the central BH.
The accretion rate and magnetic flux threading the BH
then quickly saturate into a quasi-stationary state (see also
Figure ). The accreted magnetic flux fills the polar re-
gions and gives rise to a strongly magnetised funnel with
densities and pressures dropping to their floor values. For
the adopted floor values we hence obtain values of plasma-
β as low as – and magnetisations peaking at σ ≈  in
the inner BH magnetosphere. These extreme values pose
a stringent test for the robustness of the code and, con-
sequently, the funnel region must be handled with the
auxiliary inversion based on the entropy switch (see Sec-
tion ..).

.. Comparison to HARM3D
For validation purposes we simulated the same initial con-
ditions with the HARM3D code. Wherever possible, we
have made identical choices for the algorithm used in
both codes, that is: PPM reconstruction, TVDLF Riemann
solver and a two step time update. It is important to note
that the outer radial boundary differs in both codes: while
the HARM3D setup implements outflow boundary condi-
tions at r =  M, in the BHAC runs the domain and radial
grid is doubled in the logarithmic Kerr-Schild coordinates,
yielding identical resolution in the region of interest. This
ensures that no boundary effects compromise the BHAC
simulation. Next to the boundary conditions, also the ini-
tial random perturbation varies in both codes which can
amount to a slightly different dynamical evolution.

After verifying good agreement in the qualitative evo-
lution, we quantify with both codes Ṁ and φB according
to Eqs. () and (). The results are shown in Figure .
Onset-time of accretion, magnitude and overall behaviour
are in excellent agreement, despite the chaotic nature of
the turbulent flow. We also find the same trend with re-
spect to the resolution-dependence of the results: upon
doubling the resolution, the accretion rate 〈Ṁ〉, averaged
over t ∈ [,, ,], increases significantly by a factor
of . and . for BHAC and HARM, respectively. For
〈φB〉, the factors are . and .. At a given resolution,
the values for 〈Ṁ〉 and 〈φB〉 agree between the two codes
within their standard deviations. Furthermore, we have
verified that these same resolution variations are within
the run-to-run deviations due to a different random num-
ber seed for the initial perturbation.

Further validation is provided in Figure  where disk-
averaged profiles for the two highest resolution D runs
are shown according to Eq. (). The quantities of inter-
est are the rest-frame density ρ , the dimensionless temper-
ature � := p/ρc, the magnitude of the fluid-frame mag-
netic field |B| =

√
b, thermal and magnetic pressures Pgas,

Pmag and the plasma-β . Again we set the averaging time
t ∈ [,, ,] M with both codes. The agreement can



Porth et al. Computational Astrophysics and Cosmology  (2017) 4:1 Page 24 of 42

Figure 13 2D magnetised torus evolution. Evolution of the 2D magnetised torus with resolution 1,024× 512 for times t/M ∈ {300, 1,000, 2,000}.
We show logarithmic rest-frame density (top), logarithmic plasma β (middle) and the logarithm of the magnetisation parameter σ = b2/ρ (bottom).
Magnetic field lines are traced out in the first panel using black contour lines. One can clearly make out the development of the MRI and evacuation
of a strongly magnetised funnel reaching values of β < 10–5 and σ ≈ 103.
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Figure 14 Accretion rates in the 2D magnetised torus. Accretion
rates and horizon-penetrating magnetic flux in the 2D validation runs.
We show two resolutions with each code: BHAC (blue, red) and
HARM3D (dark blue, orange). Despite the chaotic nature of the
turbulent accretion both codes show very good qualitative and
quantitative agreement.

be considered as very good, that is apart from a slightly
higher magnetisation in HARM for r ∈ [, ], the differ-
ences of which are well within the σ standard deviation
over the averaging time. Small systematic departures at the
outer edge of the HARM domain are likely attributable to
boundary effects.

4.3 3D results
We now turn to the D runs performed with BHAC. The
qualitative evolution of the high resolution run is illus-
trated in Figure  showing rest-frame density and b on
the two slices z =  and y = . Overall, the evolution pro-
gresses in a similar manner to the D cases: MRI-driven ac-
cretion starts at t ≈  M and enters saturation at around
t � , M. Similar values for the magnetisation in the
funnel region are also obtained. However, since the MRI
cannot be sustained in axisymmetry as poloidal field can-
not be re-generated via the ideal MHD induction equation
(Cowling ), we expect to see qualitative differences be-
tween the D and D cases at late times.

Four different numerical resolutions were run which al-
lows a first convergence analysis of the magnetised torus
accretion scenario. Based on the convergence study, we
can estimate which numerical resolutions are required
for meaningful observational predictions derived from
GRMHD simulations of this type.

Since we attempt to solve the set of dissipation-free ideal
MHD equations, convergence in the strict sense cannot
be achieved in the presence of a turbulent cascade [see
also the discussion in Sorathia et al. (), Hawley et
al. ()].k Instead, given sufficient scale separation, one
might hope to find convergence in quantities of interest
like the disk averages and accretion rates. The convergence

of various indicators in similar GRMHD torus simulations
was addressed for example by (Shiokawa et al. ). The
authors found signs for convergence in most quantifica-
tions when adopting a resolution of  ×  × , how-
ever no convergence was found in the correlation length
of the magnetic field. Hence the question as to whether
GRMHD torus simulations can be converged with the
available computational power is still an open one.

From Figures  and , it is clear that the resolution of
the Nθ =  run is insufficient: a peculiar mini-torus is ap-
parent in the disk-averaged density which diminishes with
increasing resolution. Also the onset-time of accretion and
the saturation values differ significantly between the Nθ =
 run and its high-resolution counterparts. These differ-
ences diminish between the high-resolution runs and we
can see signs of convergence in the accretion rate: increas-
ing resolution from Nθ =  to Nθ =  appears to not
have a strong effect on Ṁ. Also the evolution of φB agrees
quite well between Nθ =  and Nθ = . Hence the sys-
tematic resolution dependence of Ṁ and φB in the (even
higher resolution) D simulations appears to be an arte-
fact of the axisymmetry. It is also noteworthy that the vari-
ability amplitude of the accretion rate is reduced in the D
cases. It appears that the superposition of uncorrelated ac-
cretion events distributed over the φ-coordinate tends to
smear out the sharp variability that results in the axisym-
metric case.

Although the simulations were run until t = , M,
in order to enable comparison with the D simulations,
we deliberately set the averaging time to t ∈ [, M,
, M]. Figure  shows that as the resolution is in-
creased, the disk-averaged D data approaches the much
higher resolution D results shown in Figure , indicat-
ing that the dynamics are dominated by the axisymmet-
ric MRI modes at early times. When the resolution is in-
creased from Nθ =  to Nθ = , the disk-averaged pro-
files generally agree within their standard deviations, al-
though we observe a continuing trend towards higher gas
pressures and magnetic pressures in the outer regions r ∈
[ M,  M]. The overall computational cost quickly be-
comes significant: for the Nθ =  simulation we spent
 K CPU hours on the Iboga cluster equipped with In-
tel(R) Xeon(R) E- v processors. As the runtime
scales with resolution according to N

θ , doubling resolu-
tion would cost a considerable . M CPU hours.

4.4 Effect of AMR
In order to investigate the effect of the AMR treatment,
we have performed a D AMR-GRMHD simulation of the
torus setup. It is clear that whether a simulation can bene-
fit from adaptive mesh refinement is very much dependent
on the physical scenario under investigation. For example,
in the hydrodynamic simulations of recoiling BHs due to
(Meliani et al. ), refinement on the spiral shock was
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Figure 15 Disk-averaged quantities in the 2D validation runs. Disk-averaged quantities in the 2D validation runs. The blue curves are obtained
with BHAC and the red curves with HARM3D in a two-dimensional setting. The shaded regions mark the 1σ standard deviation of the
spatially-averaged snapshots (omitted for the highly fluctuating 〈β〉). Apart from a slightly higher magnetisation in HARM for r ∈ [20, 30], we find
excellent agreement between both codes.

Figure 16 3D torus evolution. Fluid-frame density (top) and log10 b
2 (bottom) for t = 3,000 M on the y = 0 plane (left) and the z = 0 plane (right) in

the 3D magnetised torus run with resolution 384× 192× 192.
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demonstrated to yield significant speedups at a compara-
ble quality of solution. This is understandable as the nu-
merical error is dominated by the shock hypersurface. In
the turbulent accretion problem, whether automated mesh
refinement yields any benefits is not clear.

The initial conditions for this test are the same as those
used in Section .. However, due to the limitation of cur-
rent AMR treatment, we resort to the GLM divergence
cleaning method. Three refinement levels are used and re-

Figure 17 Accretion rates in the 2D magnetised torus. Accretion
rates and horizon-penetrating magnetic flux in the 3D runs for
varying numerical resolution. We show results from four different
resolutions labeled according to the number of cells in θ -direction.

finement is triggered by the error estimator due to (Löhner
) with the tolerance set to εt = . (see Section .).
The numerical resolution in the base level is set to Nr ×
Nθ =  × . To test the validity and efficiency, we also
perform the same simulation in a uniform grid with res-
olution of Nr × Nθ =  ×  which corresponds to the
resolution on the highest AMR level.

Figure  shows the densities at t = , M as well as
the time-averaged density and plasma beta for the AMR
and uniform cases. The averaged quantities are calculated
in the time interval of t ∈ [, M, , M]. The overall
behaviour is quite similar in both cases. Naturally, differ-
ences are seen in the turbulent structure in the torus and
wind region for a single snapshot. However, in terms of av-
eraged quantities, the difference becomes marginal. In or-
der to better quantify the difference between the AMR and
uniform runs, the mass accretion rate and horizon pene-
trating magnetic flux are shown in Figure . These quan-
tities exhibit a similar behaviour in both cases. In particu-
lar, the difference between the AMR run and the uniform
run is smaller than the one from different resolution uni-
form runs and compatible with the run-to-run variation
due to a different random number seed (cf. Section .).
This is unsurprising since the error estimator triggers re-
finement of the innermost torus region to the highest level
of AMR during most of the simulation time. The develop-
ment of small scale turbulence by the MRI is clearly cap-
tured and it leads to similar mass accretion onto the BH.

Figure 18 Disk-averaged quantities in the 3D torus runs. Disk-averaged quantities in the 3D runs for varying numerical resolution. The shaded
regions mark the 1σ standard deviation of the spatially-averaged snapshots as in Figure 15.
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Figure 19 Evolution of the 2D torus runs with AMR. 2D logarithmic density at t = 2,000 M (left), averaged density (middle), and averaged plasma
beta (right) of the 2D magnetised torus with three-levels AMR (top panels) and uniform resolution 512× 512 (bottom panels). Magnetic field lines
are traced out in the middle panels using black contour lines. The averaged quantities are calculated in the time interval t ∈ [1,000 M, 2,000 M]. AMR
blocks containing 162 cells are indicated in the upper left panel.

One of the important merits of using AMR is the pos-
sibility to resolve small and large scale dynamics simul-
taneously with lower computational cost than uniform
grids. Figure  shows the large scale structure of the av-
eraged magnetisation after , M of simulation time.
The averaged quantities are calculated in the time inter-
val t ∈ [, M, , M]. In order to allow the large-
scale magnetic field structure to settle down, we average
over a later simulation time compared to the previous
non-AMR cases. From the figure the collimation angle
and magnetisation of the highly magnetised funnel in the

AMR case are slightly wider than those in uniform case
but the large-scale global structure is very similar in both
cases.

A comparison of the computational time for a uniform
resolution with  and the equivalent AMR run (three-
level AMR) is shown in Table . It is encouraging that
even in the naive three-level AMR simulation we obtain
qualitatively similar results comparable to the high reso-
lution uniform run, but with having spent only % of
the computational time of the uniform run.l Figure 
shows the evolution of the total number of cells during
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Figure 20 Accretion rates comparing AMR and uniform resolution. Accretion rates and horizon penetrating magnetic flux of the 2D
magnetised torus with three levels of AMR (black) and uniform resolution 512× 512 (red).

Figure 21 Magnetisation on large scales comparing AMR and uniform resolution. 2D logarithmic averaged magnetisation of the magnetised
torus with three levels of AMR (left) and uniform resolution 512× 512 (right). Magnetic field lines are traced out by white contour-lines. The averaged
quantities are calculated in the time interval of t ∈ [6,000 M, 10,000 M].

the simulations of AMR cases. Initially less than  cells
are used even when we use three AMR levels, which is
a similar number of cells as the uniform grid case with
 × . When the simulation starts, the total cell num-
ber increases rapidly due to development of turbulence in
the torus which is triggering higher refinement. We note

that the total number of cells is still half of the total num-
ber of cells in the corresponding high-resolution uniform
grid simulation ( × ), thus resulting in a direct re-
duction of computational cost. With increasing dynamic
range, we expect the advantages of AMR to increase sig-
nificantly, rendering it a useful tool for simulations involv-
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ing structures spanning multiple scales. We leave a more
detailed discussion on the effect of the AMR refinement
strategy and various divergence-control methods to a fu-
ture paper.

5 Radiation post-processing
In order to compute synthetic observable images of the
BH shadow and surrounding accretion flow it is neces-
sary to perform general-relativistic ray-tracing and GRRT
post-processing [see, e.g., Fuerst and Wu (), Vincent
et al. (), Younsi et al. (), Younsi and Wu (),
Chan et al. (), Dexter (), Pu et al. (), Younsi
et al. ()]. In this article the GRRT code BHOSS (Black
Hole Observations in Stationary Spacetimes) (Younsi et al.
) is used to perform these calculations. From BHAC,
GRMHD simulation data are produced which are subse-
quently used as input for BHOSS. Although BHAC has full
AMR capabilities, for the GRRT it is most expedient to out-
put GRMHD data that has been re-gridded to a uniform
grid.

Since these calculations are performed in post-
processing, the effects of radiation forces acting on the

Table 5 CPU hours (CPUH) spent by the simulations of the
2D magnetised torus at uniform resolution and fraction of
that time spent by the equivalent AMR runs up to t = 2,000 M

Grid size (Nr × Nθ ) CPU time
uniform [CPUH]

Equiv. AMR time
fraction [εt = 0.1]

512× 512 674.0 0.643

plasma during its magnetohydrodynamical evolution are
not included. Additionally, the fast-light approximation
has also been adopted in this study, i.e., it is assumed
that the light-crossing timescale is shorter than the dy-
namical timescale of the GRMHD simulation and the
dynamical evolution of the GRMHD simulation as light
rays propagate through it is not considered. Such calcula-
tions are considered in an upcoming article (Younsi et al.
).

Several different coordinate representations of the Kerr
metric are implemented in BHOSS, including Boyer-
Lindquist (BL), Logarithmic BL, Cartesian BL, Kerr-Schild
(KS), Logarithmic KS, Modified KS and Cartesian KS.
All GRMHD simulation data used in this study are spec-
ified in Logarithmic KS coordinates. Although BHOSS
can switch between all coordinate systems on the fly, it
is most straightforward to perform the GRRT calcula-
tions in the same coordinate system as the GRMHD data,
only adaptively switching to e.g., Cartesian KS when near
the polar region. This avoids the need to transform be-
tween coordinate systems at every point along every ray
in the GRMHD data interpolation, saving computational
time.

5.1 Radiative transfer equation
Electromagnetic radiation is described by null geodesics
of the background spacetime (in this case Kerr), and these
are calculated in BHOSS using a Runge-Kutta-Fehlberg in-
tegrator with fourth order adaptive step sizing and th or-
der error control. Any spacetime metric may be consid-
ered in BHOSS, as long as the contravariant or covariant

Figure 22 Number of cells as a function of time for the AMR simulation. Number of cells as a function of time for the AMR simulation. The
dotted lines show the resolution of uniform grids equivalent to each of the three AMR levels.
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metric tensor components are specified, even if they are
only tabulated on a grid. For the calculations presented in
this article the Kerr spacetime is written algebraically and
in closed-form.

The observer is calculated by constructing a local or-
thonormal tetrad using trial basis vectors. These basis vec-
tors are then orthonormalized using the metric tensor
through a modified Gram-Schmidt procedure. The initial
conditions of each ray for the coordinate system under
consideration are then calculated and the geodesics are in-
tegrated backwards in time from the observer, until they
either: (i) escape to infinity (exit the computational do-
main), (ii) are captured by the BH, or (iii) are effectively
absorbed by the accretion flow.

In order to perform these calculations the GRRT equa-
tion is integrated in parallel with the geodesic equations of
motion of each ray. Written in covariant form, the (unpo-
larized) GRRT equation, in the absence of scattering, may
be written Younsi et al. () as

dI
dλ

= –kμuμ

(
–αν,I +

jν,

ν


)
, ()

where I := Iν/ν is the Lorentz-invariant intensity, Iν is the
specific intensity, ν is the frequency of radiation, αν, is the
specific absorption coefficient and jν, is the specific emis-
sion coefficient. The subscript ‘ν ’ denotes evaluation of a
quantity at a specific frequency, ν , and a subscript ‘’ de-
notes evaluation of a quantity in the local fluid rest frame.
The terms kμ and uμ are the photon -momentum and
the fluid -velocity of the emitting medium, respectively.
The former is calculated from the geodesic integration and
the latter is determined from the GRMHD simulation data.
The affine parameter is denoted by λ.

By introducing the optical depth along the ray

τν(λ) = –
∫ λ

λ

αν,
(
λ′)kμuμ dλ′, ()

together with the Lorentz-invariant emission coefficient
(η = jν/ν) and Lorentz-invariant absorption coefficient
(χ = ναν), the GRRT Eq. () may be rewritten as

dI
dτν

= –I +
η

χ
. ()

Following (Younsi et al. ), Eq. () may be reduced to
two differential equations

γ
dτν

dλ
= αν,, ()

γ
dI
dλ

=
jν,

ν


exp(–τν), ()

where

γ =
ν

ν
=

(kαuα)obs

(kβuβ )
, ()

is the relative energy shift between the observer (‘obs’) and
the emitting fluid element. Integrating the GRRT equa-
tion in terms of the optical depth in the manner presented
provides two major advantages. Firstly, the calculation of
the geodesic and of the radiative transfer equation may be
performed simultaneously, rather than having to calculate
the entire geodesic, store it in memory, and then perform
the radiative transfer afterwards. Secondly, by integrating
in terms of the optical depth we may specify a threshold
value (typically of order unity) whereby the geodesic in-
tegration is terminated when encountering optically thick
media exceeding this threshold. The combination of these
two methods saves significant computational time and ex-
pense.

5.2 BHOSS-simulated emission from Sgr A*
Having in mind the upcoming radio observations of the
BH candidate Sgr A* at the Galactic Centre, the follow-
ing discussion presents synthetic images of Sgr A*. The
GRMHD simulations evolve a single fluid (of ions) and are
scale-free in length and mass. Consequently a scaling must
be applied before performing GRRT calculations. Within
BHOSS this means specifying the BH mass, which sets the
length and time scales, and specifying either the mass ac-
cretion rate or an electron density scale, which scales the
gas density, temperature and magnetic field strength to
that of a radiating electron.

Since the GRMHD simulation is of a single fluid, it is
necessary to adopt a prescription for the local electron
temperature and rest-mass density. Several such prescrip-
tions exist, some which scale using the mass accretion rate
[see, e.g., Mościbrodzka et al. (), Mościbrodzka et al.
(), Dexter et al. ()], scale using density to deter-
mine the electron number density and physical accretion
rate [see, e.g., Chan et al. (), Chan et al. ()], and
some by employing a time-dependent smoothing model of
the mass accretion rate [see, e.g., Shiokawa et al. ()].

The dimensionless proton temperature, �p, is defined as

�p :=
kBTp

mpc , ()

where kB is the Boltzmann constant, Tp is the geometri-
cal (i.e., in physical units) proton temperature and mp is
the proton mass. This is then calculated from the GRMHD
simulation density (ρ) and pressure (p) as

�p =
p
ρ

, ()
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where the fact that the equation of state is ideal and that
γ̂ = / has been assumed. The magnetic field strength in
geometrical units, Bgeo, is readily obtained from the code
magnetic field strength B =

√
bμbμ as

Bgeo = c
(

ρgeo

ρ

)/

B. ()

What remains is to specify Te (or �e := kBTe/mec) and
ρgeo. For simplicity we adopt the prescription of (Mości-
brodzka et al. ), wherein Tp/Te is assumed to be a
fixed ratio. Whilst such an approximation is rather crude,
to zeroth order the protons and electrons may be assumed
to be coupled in this way. To scale the electron number
density we adopt the method of (Chan et al. ), as-
suming a density scale typically of order cm–. A some-
what more sophisticated approach is to employ a thresh-
olding of the fluid plasma beta where, when the local
plasma beta exceeds some threshold the electrons and pro-
tons are coupled as previously mentioned (disk region),
but when not exceeded (typically in the funnel region) the
electron temperature is assumed to be constant (Mości-
brodzka et al. ; Mościbrodzka et al. ; Chan et al.
). Since plasma beta is found to decrease with res-
olution (Shiokawa et al. ) and in this paper we seek
only to demonstrate the convergence of our simulated
shadow images obtained from the GRMHD data in regions
where the density is non-negligible, we adopt the former
model.

For the plasma emissivity we use the approximate for-
mula for thermal magnetobremsstrahlung (Leung et al.
), which is given by

jν =
(√

πe

c

)
ne

νs

K(�–
e )

(
X/ + /X/)

× exp
(
–X/), ()

where e is the electron charge, ne the electron number den-
sity, and

X :=
ν

νs
, ()

νs =
(

e
πmec

)
B�

e sinϑ , ()

and ϑ is the pitch angle of the photon with respect to the
magnetic field. The absorption coefficient is readily ob-
tained from Kirchoff’s law.

Each image is generated using a uniform grid of , ×
, rays, sampling  uniformly logarithmically spaced
frequency bins between  Hz and  Hz. All panels de-
pict the observed image as seen at an observational fre-

quency of  GHz, i.e. the frequency at which the EHT
will image Sgr A*. This resolution is chosen because the
integrated flux over the entire ray-traced image is conver-
gent: doubling the resolution from  ×  to , ×
, yields an increase of .%, and from , × ,
to , × , an increase of .%.

In practical GRRT calculations only simulation data
which has already reached a quasi-steady state, typically
t > , M, is used. In this study we focus on the obser-
vational appearance of the accretion flow and BH shadow
image. The detailed discussion of the spectrum, variability
and plasma models warrants a separate study.

5.3 Comparison of images
A natural and important question arises from GRRT calcu-
lations of BH shadows: do ray-traced images of GRMHD
simulation data converge as the resolution of the GRMHD
simulation is increased? The existence of an optimal reso-
lution, beyond which differences in images are small, im-
plies that one can save additional computational time and
expense by running the simulation at this optimal reso-
lution. It would also imply that the GRMHD data satis-
factorily capture the small-scale structure, turbulence and
variations of the accretion flow. As such, it is informative
to investigate the convergence of BH shadow images ob-
tained from GRMHD simulation data of differing resolu-
tions, both quantitatively and qualitatively.

To address this question we first generate a series of four
snapshot images at t = , M of the the accretion flow
and BH shadow from GRMHD simulation data. The reso-
lution of these data are N ×N ×N in (r, θ ,φ), i.e., twice
as much resolution in the radial direction compared to the
zenith and azimuthal directions. The images depicted in
Figure  correspond to N = , ,  and  respec-
tively. Here, the proton to electron temperature ratio was
chosen as Tp/Te =  (similar to (Mościbrodzka et al. ;
Mościbrodzka et al. )), the electron number density
scaling as × cm–, the BH mass is set to .× M�,
the source distance is . ×  pc, the dimensionless BH
spin parameter . and the observer inclination angle
with respect to the BH spin axis is ◦.

A direct consequence of increasing the resolution of the
GRMHD data is resolving the fine-scale turbulent struc-
ture of the accretion flow. The characteristic dark shadow
delineating the BH shadow can be clearly seen in all im-
ages. As the resolution of the GRMHD data is increased,
the images become less diffuse. It is difficult with the
naked eye to draw firm physical conclusions, and so in the
following we perform a quantitative pixel-by-pixel analy-
sis.

With these snapshot images we may perform a quanti-
tative measure of the difference between any two images
through introducing the (normalised) cross-correlation.
For two given two-dimensional arrays f (x, y) and g(x, y)
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Figure 23 GRRT of 3D torus for increasing resolution. Snapshot images of 3D GRMHD simulation data with parameters chosen to mimic the
emission from Sgr A*. The resolution of the simulation data is indicated in the bottom-right corner of each panel and discussed in the text.

(i.e., D images), a measure of similarity or difference
may be calculated through the cross-correlation C , where
C ∈ [–, ]. The normalised cross-correlation is defined
as

C := Ci,j

:=


Nσf σg

∑

x,y

{[
f (x, y) – μf

][
g(x, y) – μg

]}
, ()

where μf , σf and μg , σg correspond to the mean and stan-
dard deviation of f and g respectively, and N is equal to the
size of either f or g . In the examples considered here the
images are all of equal size and dimension, so N = Nf = Ng .

Equation () may be interpreted as the inner product be-
tween two data arrays, with the value of C expressing the
degree to which the data are aligned with respect to each
other. When C =  the data are identical, save for a mul-
tiplicative constant, when C =  the data are completely
uncorrelated, and when C <  the data are negatively cor-
related.

Each image pixel has an intensity value represented as
a single greyscale value between zero and one. Given the
relative intensity data of two different images, Eq. ()
is then employed to determine the normalised cross-
correlation between the two images. This procedure ap-
plied to the panels in Fig. () yields the following symmet-
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ric matrix of cross-correlation values between the images

Ci,j =

⎛

⎜
⎜
⎝

 . . .
–  . .
– –  .
– – – 

⎞

⎟
⎟
⎠ . ()

A visual representation of the pixel-by-pixel differences is
given in Figure . Indices i and j, where (i, j) = (, ), de-
note the images being cross-correlated.

The rightmost column of Eq. () denotes the cross-
correlation values, Ci,, in descending order between im-
ages, i.e., the cross-correlation of image  with images ,
,  and  respectively. Since Ci+, > Ci, it is clear that
the similarity between images increases as the resolution
of the GRMHD simulation is increased. Similarly, for im-
age  it is found that Ci+, > Ci,. Finally, it also follows
that C, > C, > C,, i.e., the correlation between succes-
sive pairs of images increases with increasing resolution,
demonstrating the convergence of the GRMHD simula-
tions with increasing grid resolution. Whilst the lowest
resolution of  ×  ×  is certainly insufficient, both
difference images and cross-correlation measures indicate
that a resolution of  ×  ×  is sufficient and rep-
resents a good compromise.

6 Conclusions and outlook
We have described the capabilities of BHAC, a new mul-
tidimensional general-relativistic magnetohydrodynamics
code developed to perform hydrodynamical and MHD
simulations of accretion flows onto compact objects in ar-
bitrary stationary spacetimes exploiting the numerous ad-
vantages of AMR techniques. The code has been tested
with several one-, two- and three- dimensional scenar-
ios in special-relativistic and general-relativistic MHD
regimes. For validation, GRMHD simulations of MRI un-
stable tori have been compared with another well-known
and tested GRMHD code, the HARM3D code. BHAC shows
very good agreement with the HARM3D results, both qual-
itatively and quantitatively. As a first demonstration of
the AMR capabilities in multi-scale simulations, we per-
formed the magnetized-torus accretion test with and with-
out AMR. Despite the latter intrinsically implies an over-
head of ∼ %, the AMR runtime amounted to % of
that relative to the uniform grid, simply as a result of the
more economical use of grid cells in the block based AMR.
At the same time, the AMR results agree very well with the
more expensive uniform-grid results. With increasing dy-
namic range, we expect the advantages of AMR to increase
even more significantly, rendering it a useful tool for sim-
ulations involving structures of multiple physical scales.

Currently, two methods controlling the divergence of the
magnetic field are available in BHAC and we compared
them in three test problems. Although solutions obtained

with the cell-centered flux-interpolated constrained trans-
port (FCT) algorithm and the divergence cleaning scheme
(GLM) yield the same (correct) physical behaviour in the
case of weak magnetic fields, FCT performs considerably
better in the presence of strong magnetic fields. In particu-
lar, FCT is less diffusive than GLM, is able to preserve a sta-
tionary solution, and it creates less spurious structures in
the magnetic field. For example, the use of GLM in the case
of accretion scenarios with strong magnetic fields leads to
worrisome artefacts in the highly magnetised funnel re-
gion. The development of a constrained transport scheme
compatible with AMR is ongoing and will be presented in
a separate work (Olivares et al. ).

The EHTC and its European contribution, the Black-
HoleCam project (Goddi et al. ), aim at obtaining
horizon-scale radio images of the BH candidate at the
Galactic Center. In anticipation of these results, we have
used the D GRMHD simulations as input for GRRT cal-
culations with the newly developedBHOSS code (Younsi et
al. ). We found that the intensity maps resulting from
different resolution GRMHD simulations agree very well,
even when comparing snapshot data that was not time
averaged. In particular, the normalised cross-correlation
between images achieves up to .% similarity between
the two highest resolution runs. Furthermore, the agree-
ment between two images converges as the resolution of
the GRMHD simulation is increased. Based on this com-
parison, we find that moderate grid resolutions of  ×
× (corresponding to physical resolutions of �rKS ×
�θKS ×�φKS = . M × . rad × . rad at the hori-
zon) yield sufficiently converged intensity maps. Given the
large and likely degenerate parameter space and the uncer-
tainty in modelling of the electron distribution, this result
is encouraging, as it demonstrates that the predicted syn-
thetic image is quite robust against the ever-present time
variability, but also against the impact that the grid res-
olution of the GRMHD simulations might have. In addi-
tion, independent information on the spatial orientation
and magnitude of the spin, such as the one that could be
deduced from the dynamics of a pulsar near Sgr A* (Psaltis
et al. ), would greatly reduce the space of degenerate
solutions and further increase the robustness of the predic-
tions that BHAC will provide in terms of synthetic images.

Finally, we have demonstrated the excellent flexibility of
BHAC with a variety of different astrophysical scenarios
that are ongoing and will be published shortly. These in-
clude: oscillating hydrodynamical equilibrium tori for the
modelling of quasi-periodic oscillations (de Avellar et al.
), episodic jet formation (Porth et al. ) and mag-
netised tori orbiting non-rotating dilaton BHs (Mizuno et
al. ).
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Figure 24 Matrix of image differences Di,j . Matrix of image differencesDi,j of the four panels in Figure 23. Upper diagonal panels are greyscale
differences. Lower diagonal panels are identical to corresponding upper diagonal panels but with differences illustrated with RGB pixel values. Black
panels correspond toDi,i , i.e., trivially the difference between an image and itself.

Appendix A: Evolution of the scalar φ
To obtain the evolution equation for φ in the augmented
Faraday’s law, we project () onto the Eulerian observer
by contracting with –nμ as

–∇ν

(∗Fμνnμ – φnν
)

= –κφ –
(∗Fμν – φgμν

)∇νnμ ()

⇒ ∇νBν + ∇νφnν

= –κφ –
(∗Fμν – φgμν

)∇νnμ ()

⇒ (–g)–/∂i
[
γ /αBi] + ∇νφnν

= –κφ –
(∗Fμν – φgμν

)∇νnμ, ()

where we used Bν = –nμ
∗Fμν . Using the definition of ex-

trinsic curvature Kμν := –γ λ
μ∇λnν , we can write [Eq. (.)

in (Rezzolla and Zanotti )]

∇νnμ = –nνaμ – Kμν , ()

where we used the ‘acceleration’ of the Eulerian observer
aμ := nλ∇λnμ which satisfies nμaμ = . With the identity
ai = α–∂iα (York ) and exploiting the symmetries of
∗Fμν and Kμν , is straightforward to show that

(γ )–/∂i
[
(γ )/αBi] + αF∗μν∇νnμ

= (γ )–/∂i
[
(γ )/αBi] – Bi∂iα. ()

Hence it follows that

∂t(
√

γφ) + ∂i
[√

γ
(
αBi – φβ i)]

= –αγ /κφ + αγ /φgμν∇νnμ + γ /Bi∂iα. ()
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Using again Eq. (), the source term S := √
γ αφgμν∇νnμ

can be rewritten as

S = –
√

γαφgμνKμν , ()

where the first term drops out due to the orthogonality
nμaμ = . For a symmetric tensor Sμν , we have

αSμνKμν = αSijKij

= Si
j∂iβ

j +



Sijβk∂kγij. ()

This follows from the relation �
ij = –Kijα

– where �
ij are

elements of the -Christoffel symbols [see e.g., (B.) of (Al-
cubierre )]. Thus

S = –
√

γφ

(
∂iβ

i +


γ ijβk∂kγij

)
()

= –
√

γφ∂iβ
i –

√
γφ



γ ijβk∂kγij. ()

Appendix B: Modified Faraday’s law
The augmented Faraday’s law follows from the j-
component of () as

∇ν

(∗Fjν – φgjν) = κφβ j/α ()

⇒ (–g)–/{∂t
[√

γ
(
–Bj)]

+ ∂i
[√

γ
(
V jBi – V iBj)]}

+ gjλ∂λ(–φ) = κφβ j/α ()

⇒ ∂t
(√

γ Bj) + ∂i
[√

γ
(
V iBj – V jBi)]

+
√

γ αgjλ∂λφ = –κφ
√

γβ j ()

⇒ ∂t
(√

γ Bj) + ∂i
[√

γ
(
V iBj – V jBi)]

+
β j

α
∂t(

√
γφ) +

√
γαγ ji∂iφ

–
√

γ
β iβ j

α
∂iφ = –

√
γ κφβ j. ()

We see that apart from the gradient φ-term, we obtain
another term that involves the time-derivative of (√γφ).
Hence we need to plug in Eq. (). We rewrite the term
β j∂t(

√
γφ)/α simplifying the lengthy expression

β j

α
∂t(

√
γφ) = –

β j

α
∂i
[√

γ
(
αBi – φβ i)]

–
√

γ κφβ j –
β j

α

√
γφ∂iβ

i

–



β j

α

√
γφγ ilβk∂kγil

+
β j

α

√
γ Bi∂iα ()

= –∂i
[√

γ Biβ j] +
√

γ Bi∂iβ
j

+
√

γ
β iβ j

α
∂iφ –

√
γ κφβ j. ()

Substituting this into () yields the modified Faraday’s
law ().

Appendix C: Derivation of cell centred formulas for
FCT

In the  +  decomposition, for the case of a stationary
spacetime the induction equation can be written in com-
ponent form as

∂t
√

γ Ba + ∂b
(
–ηabcEc

)
= . ()

Integrating this on each of the surfaces bounding a cell
with vertexes at x

i+l , x
i+l , x

i+l with l = ±/, and using
the Stokes theorem, we obtain the evolution equations for
the magnetic flux in CT, for instance

d�i+/,j,k

dt
= Gi+/,j+/,k – Gi+/,j–/,k

– Gi+/,j,k+/ + Gi+/,j,k–/, ()

where

�i+/,j,k =
∫

∂V (x
i+/)

γ /B dx dx, ()

with each G representing a line integral of the form

Gi+/,j+/,k = –
∫ x

k+/

x
k–/

E|x
i+/,x

j+/
dx. ()

The fact that each of these integrals appear in the evolu-
tion equation of two magnetic fluxes guarantees the con-
servation of divergence, as will be explained in the next
Section.

On the other hand, the numerical fluxes corresponding
to the magnetic field components that are returned by the
Riemann solver are surface integrals of the electric field,
for example, the flux in the x-direction for B is

�SF̄|i,j+/,k =
∫ x

i+/

x
i–/

∫ x
k+/

x
k–/

Ex |j+/ dx dx. ()

The innermost integral is the same as that of Eq. (),
so the average flux can be interpreted as

�SF̄|i,j+/,k = –�xiG̃i,j+/,k , ()
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where G̃i,j+/,k is the mean value of the integral from Eq.
(). To second-order accuracy, this integral takes the
value G̃i,j+/,k at the middle of the cell, therefore Gi+/,j+/,k
can be found by interpolating the averaged fluxes from the
four adjacent cell faces as

Gi+/,j+/,k

=



(
�SF̄|i,j+/,k

�x
+

�SF̄|i+,j+/,k

�xi+

–
�SF̄|i+/,j,k

�yj
–

�SF̄|i+/,j+,k

�yj+

)
. ()

Since we implemented a cell-centred version of FCT, we
are interested in the evolution of the average magnetic field
at the cell centres. To second order accuracy, the rate of
change of the average value of the x-component of the
magnetic field is

∫ xx+/

xi–/

d�

dt
dx = �Vijk

dB̄x

dt

≈ �xi



(
d�

dt

∣
∣∣
∣
xi+/

+
d�

dt

∣
∣∣
∣
xi–/

)
. ()

Now we substitute Eq. () into Eq. () and Eq.
() into Eq. (). After some algebra, we finally obtain
Eqs. () and ().

Appendix D: Discretisation of ∇ · B and
zero-divergence initial conditions

CT schemes aim to maintain to zero at machine precision
the discretisation of the divergence given by

(∇ · B)i,j,k =


�Vi,j,k
(�i+/,j,k – �i–/,j,k + �i,j+/,k

– �i,j–/,k + �i,j,k+/ – �i,j,k–/), ()

which can be thought of as the volume average of the quan-
tity ∂a(γ /Ba) in the given cell.

When calculating the evolution equation for (∇ · B)i,j,k ,
each of the integrals G appear with opposite signs in the
expression for d�/dt () and cancel to machine preci-
sion. Therefore, if this discretisation of the divergence was
originally zero, it will be zero to machine precision during
the rest of the simulation.

However, in the cell-centred version of FCT employed
here, we lack information concerning the magnetic flux at
cell faces, so Eq. () cannot be used to monitor the cre-
ation of divergence. We will therefore find a derived quan-
tity that we can monitor based on the other available quan-
tities.

We calculate the average value of the divergence of eight
cells sharing a vertex as

(∇ · B)i+/,j+/,k+/

=


�V ∗
∑

l,l,l=,

�V (∇ · B)|i+l,j+l,k+l . ()

When substituting Eq. (), the right hand side of Eq.
() consists of a sum of terms of the form

∑

l,l=,

(�i+/,j+l,k+l – �i+/,j+l,k+l

+ �i+/,j+l,k+l – �i–/,j+l,k+l ),

for each direction. Using the same second-order approxi-
mation as for the time-update,

�Vi,j,kB̄x
i,j,k ≈ �xi


(�i+/,j,k + �i–/,j,k), ()

this becomes

∑

l,l,l=,

[
(–)+l B̄�V

�x

]

i+l,j+l,k+l
.

Finally, summing over the three directions, we recover
Eq. (). Since the same second-order approximation is
used both for the definition and for the time update of B̄a,
the definition of divergence given by Eq. () is conserved
to machine precision during each evolution step.

To obtain a divergence-free initial condition, we calcu-
late the magnetic field as the curl of a vector potential.
First, we calculate the magnetic flux at each of the cell faces
as

�i+/,j,k = Ai+/,j+/,k – Ai+/,j–/,k

– Ai+/,j,k+/ + Ai+/,j,k–/, ()

where A are line integrals of the vector potential along the
cell edges

Ai+/,j+/,k =
∫ x

k+/

x
k–/

A|x
i+/,x

j+/
dx. ()

Then we use again the second order approximation from
Eq. () to find the average magnetic field components
at the cell center. By construction, in this way we obtain
a divergence-free initial condition using either of the dis-
cretization of divergence in Eqs. () or ().
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Endnotes
a http://www.eventhorizontelescope.org
b http://www.blackholecam.org
c This quantity is often indicated asW (Antón et al. 2006;

Rezzolla and Zanotti 2013).
d Using τ = U – D instead of U improves accuracy in regions of low energy

and enables one to consistently recover the Newtonian limit.
e For implementation details, see Porth et al. (2014).
f In the general-relativistic hydrodynamic WhiskyTHC code (Radice and
Rezzolla 2012; Radice et al. 2014), this desirable property allows to set
floors on density close to the limit of floating point precision ∼ 10–16ρref .

g We note that for the reference solution we have relied here on the
extensive set of tests performed in flat spacetime within the
MPI-AMRVAC framework; however, we could also have employed as
reference solution the ‘exact’ solution as derived in Ref. (Giacomazzo and
Rezzolla 2006).

h Note that the discrepancy in vr appears less dramatic when viewed in
terms of the four-velocity ur .

i We thank Chris Fragile for providing subroutines for this test case.
j The results were kindly provided by Monika Moscibrodzka.
k Even when the dissipation length is well resolved, high-Reynolds number

flows show indications for positive Lyapunov exponents and thus
non-convergent chaotic behaviour see, e.g., Lecoanet et al. (2016).

l Since we use the same Courant limited timestep for all grid-levels, the
speedup is entirely due to saving in computational cells. The additional
speedup that would be gained from (Berger and Oliger 1984)-type
hierarchical timesteps can be estimated from the level population of the
simulation: the expected additional gain is only ∼ 8% for this setup.
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