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Abstract

The “gravitational million-body problem,” to model the dynamical evolution of a self-gravitating, collisional N-body
system with ~ 10° particles over many relaxation times, remains a major challenge in computational astrophysics.
Unfortunately, current techniques to model such systems suffer from severe limitations. A direct N-body simulation
with more than 10° particles can require months or even years to complete, while an orbit-sampling Monte Carlo
approach cannot adequately model the dynamics in a dense cluster core, particularly in the presence of many black
holes. We have developed a new technique combining the precision of a direct N-body integration with the speed
of a Monte Carlo approach. Our Rapid And Precisely Integrated Dynamics code, the RAPID code, statistically models
interactions between neighboring stars and stellar binaries while integrating directly the orbits of stars or black holes
in the cluster core. This allows us to accurately simulate the dynamics of the black holes in a realistic globular cluster
environment without the burdensome N? scaling of a full N-body integration. We compare RAPID models of
idealized globular clusters to identical models from the direct N-body and Monte Carlo methods. Our tests show that
RAPID can reproduce the half-mass radii, core radii, black hole ejection rates, and binary properties of the direct
N-body models far more accurately than a standard Monte Carlo integration while remaining significantly faster than
a full N-body integration. With this technique, it will be possible to create more realistic models of Milky Way globular
clusters with sufficient rapidity to explore the full parameter space of dense stellar clusters.

1 Main text

The dynamics of dense star clusters is one of the most
challenging problems of modern computational astro-
physics. The large number of particles, high interaction
rate, and large number of processes with vastly differ-
ent physical timescales conspire to make globular clus-
ters (GCs) and galactic nuclei (GN) uniquely difficult to
model. In particular, the large number of black holes
(BHs) in both GCs and GN often dynamically interact
on a much shorter timescales than the rest of the clus-
ter (Spitzer 1969). Although only comprising a small frac-
tion of the total cluster mass, these BHs provide the domi-
nant energy source for GCs, especially after the BH-driven
core-collapse (Morscher et al. 2015). Hence, understand-
ing their dynamics is critical to understanding the over-

“Correspondence: carlrodr@mit.edu
"MIT-Kavli Institute for Astrophysics and Space Research, Cambridge, USA
Full list of author information is available at the end of the article

@ Springer

and indicate if changes were made.

all evolution and present-day appearance of these systems
(Mackey et al. 2008). Unfortunately, since the orbital and
interaction timescales of these BHs are frequently orders-
of-magnitude smaller than the interaction timescale of a
typical star in the cluster, resolving these effects can be
particularly difficult.

Modern stellar dynamics codes have intensely investi-
gated GCs, with the majority of work focusing on two
approaches. The N-body approach directly integrates the
force of every particle on every other particle, with the
current generation of codes (Portegies Zwart et al. 2001;
Harfst et al. 2008; Nitadori and Aarseth 2012; Capuzzo-
Dolcetta et al. 2013; Wang et al. 2015) making extensive use
of state-of-the-art hardware acceleration and algorithmic
enhancements. While extremely precise, this approach can
require more than a year (e.g., Heggie 2014; Wang et al.
2016) to complete a full simulation of a realistic Milky-Way
GC.
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As such, an approximate Monte Carlo (MC) technique
is often used in place of a full direct summation (Hénon
1971; Giersz 1998; Joshi et al. 2000; Freitag and Benz 2001).
Whereas an N-body approach computes the orbit of stars
directly, the orbit-sampling approach assumes that par-
ticle orbits remain fixed on a dynamical timescale, only
changing due to slight perturbations from two-body en-
counters between neighboring particles. This allows the
orbits to be sampled statistically, and since computing a
single orbit in a fixed spherical potential is faster than com-
puting the precise orbits in the full-N potential of a clus-
ter, these MC models can be generated in at most a few
days or weeks. However, the assumptions of spherical sym-
metry and dynamical equilibrium break down in the BH-
dominated core, where the potential and the particle or-
bits are primarily determined by a small number of par-
ticles. This can lead to a substantial underprediction of
the core radii by MC techniques (compared to direct N-
body), particularly during the deep collapses that produce
dynamically-assembled binaries (Morscher et al. 2015; Ro-
driguez et al. 2016a).

GCs are formed as the result of a burst of star formation
in the early universe. Approximately 10 to 20 Myr after this
formation is complete, the most massive stars in the clus-
ter collapse, yielding hundreds to thousands of BHs (Bel-
czynski et al. 2006). As the BHs are more massive than the
typical cluster star, they are rapidly driven to the center of
the GC by dynamical friction (Fregeau et al. 2002); once
there, the number density of BHs is sufficient to form bina-
ries via three-body encounters. While it was long-assumed
that these BHs would not be retained in GCs to the present
day (e.g., Sigurdsson and Hernquist 1993), recent evidence
has begun to suggests otherwise.

The past decade has seen the first detections of BHs in
GCs, starting with the first detection in an extragalactic
GC by Maccarone et al. (2007) and several recent detec-
tions in Milky Way GCs, (Chomiuk et al. 2013; Strader
etal. 2013; Miller-Jones et al. 2015), including two BH can-
didates in M22 (Strader et al. 2012) and the recent dy-
namical measurement of a 2 4.5My BH in NGC 3201
(Giesers et al. 2018). These observational results compli-
mented recent theoretical results suggesting that the GCs
can potentially retain hundreds of BHs up to the present
day (Mackey et al. 2007; Downing 2012; Morscher et al.
2013, 2015; Kremer et al. 2018; Askar et al. 2018). This
has led to a new theoretical understanding that the num-
ber of BHs retained in a GC directly controls the size and
density of its observational core (e.g., Merritt et al. 2004;
Mackey et al. 2008; Sippel and Hurley 2013; Breen and
Heggie 2013; Kremer et al. 2018a; Arca Sedda et al. 2018).
The importance of BHs in GCs cannot be overstated. In
addition to determining the structural and evolutionary
properties of the clusters, GCs also have important impli-
cations for BH astrophysics. GCs can produce X-ray bi-
naries at a significantly higher rate than the galactic field
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(Clark 1975), suggesting that there might be ~ 100s of low-
mass X-ray binaries in Milky Way GCs (Pooley et al. 2003).
Furthermore, recent studies have shown that the second-
generation of gravitational-wave detectors can potentially
detect 2 100 binary BH mergers per year from binaries
forged in the cores of GCs (Rodriguez et al. 2015, 2016b;
Antonini et al. 2016), with recent detections (Abbott et al.
2017) by LIGO/Virgo showing spin alignments suggestive
of dynamical formation. As such, understanding the dy-
namics of these systems is critical.

What is needed is a technique that combines the speed of
the MC approach with the precision of a direct N-body in-
tegration. In this paper, we describe a new code, the Rapid
and Precisely Integrated Dynamics (RAPID) code, which
combines both methods into a “best of both worlds” ap-
proach. In this method, the majority of particles are mod-
eled with our parallel Hénon-style code, the Cluster MC
(cMC) code (Pattabiraman et al. 2013), while the orbits of
BHs are integrated directly with the Kira N-body integra-
tor (Portegies Zwart et al. 2001). We find that this tech-
nique accurately reproduces the core radii and BH dynam-
ics of a full direct N-body integration, with similar run-
times to the MC approach. Although we only integrate the
BH orbits directly in the current work, the method is gen-
eral, allowing us to select any population of particles in the
cluster for N-body integration.

In Sect. 2, we briefly review the N-body and MC ap-
proaches, and describe the combination of the two ap-
proaches as implemented in RAPID code. In Sect. 3, we
describe a single RAPID timestep, illustrating the techni-
cal details of the approach, while in Sect. 4, we describe the
parallelization strategy that allows us to compute particle
positions and velocities via orbit sampling and direct N-
body simultaneously. In Sect. 5, we show the results of an
analytic toy model, comparing the inspiral due to dynami-
cal friction of a single particle as predicted by theory, direct
N-body, and RAPID. Finally, in Sect. 6, we compare the
properties of four idealized GCs as modeled by NBODY6,
CMC, and RAPID. Throughout the paper, we will frequently
refer to the “stars” and “BHs” in the cluster separately. In
our current method, the stars are modeled with CMC and
the BHs are integrated with Kira. This shorthand is to de-
lineate which systems are being modeled by which tech-
nique, even though the particles under consideration are
point-mass particles.

2 Hybridization approach

In this section, we provide a brief overview of the current
methods employed to model GCs, and describe how our
approach combines the virtues of both methods. Both the
N-body and MC approaches are the result of decades of
precision work by multiple groups. For a more compre-
hensive description of collisional N-body dynamics, see
Aarseth (2003) or Dehnen and Read (2011). A review of
MC methods can be found in Freitag (2008).
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It should be noted that RAPID is not the first attempt
at a hybrid N-body/statistical sampling approach to stel-
lar dynamics. In particular, the hybrid approach developed
by McMillan and Lightman (1984b) combined a Fokker-
Planck sampling code with a direct N-body approach, in
order to study GCs undergoing core collapse (McMillan
and Lightman 1984a; McMillan 1986). The RAPID code
continues this tradition of attempting to “have it all’; by
combining the best of the direct integration and statisti-
cal sampling methods.

2.1 Direct N-body integration

The physical principle behind a direct N-body integrator
is simple: since the force on any given particle in the sum of
the gravitational force from every other particles in a given
system, the most accurate way to model such a system is to
numerically sum all the forces. This is the underlying prin-
ciple behind the N-body integrators. The most frequently
used of these codes, the NBODY series of codes, have been
improved and finely tuned with additional physics, includ-
ing stellar evolution (Hurley et al. 2001), algorithmic reg-
ularization (Aarseth 1999), post-Newtonian chain regu-
larization (Aarseth 2012), and GPU acceleration (Nitadori
and Aarseth 2012). With advanced hardware and a mini-
mal number of simplifying assumptions, direct integration
is the most precise method available for modeling dense
stellar systems.

However, this precision comes at a cost. Naively, the cost
of an N-body integration scales as N2, since one must
evaluate the force of every particle on every other par-
ticle, every timestep. In practice, most modern N-body
codes do not evaluate the force between every particle ev-
ery timestep, instead opting for a variable “block” timestep
approach in which only certain particles have their forces
re-evaluated at a given time. Despite this, and many other
algorithmic improvements (such as employing a nearest
neighbor scheme to accelerate force evaluations), the com-
putational cost to integrate a cluster of N particles for-
ward by a given physical time scales as O(N?), regardless
of the timestep scheme or mass distribution of the cluster
(Makino and Hut 1988).

This steep scaling makes large-scale simulations of mas-
sive star clusters exceedingly challenging. The largest sim-
ulation attempted with NBODY6 is currently the N =
5 x 10° model of galactic GC M4 performed by Heggie
(2014), requiring 2.5 years on a dedicated GPU system.
More recently, the current state-of-the-art parallelized
code NBODY6++GPU (Wang et al. 2015) can model a re-
alistic (N = 10°) cluster in little more than a year (Wang
et al. 2016). Despite these remarkable achievements, sim-
ulation times in excess of ~ 1 year for large systems pre-
clude any reasonable exploration of the parameter space
of initial conditions of GCs, and any collisional models of
GN (N = 107-10%) remain beyond the capabilities of the
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current generation of direct summation techniques. To
answer astrophysical questions related to such systems, a
more rapid technique is called for.

For our hybrid approach, we use the Kira N-body inte-
grator, included as part of the Starlab software pack-
age (Portegies Zwart et al. 2001). Like the NBODY series of
codes, Kira is a 4th-order Hermite predictor-corrector in-
tegrator with a block timestep scheme. Kira also integrates
close encounters and tightly-bound multiples using Keple-
rian regularization, where sufficiently-isolated hyperbolic
and tightly bound binaries are evolved as analytic two-
body systems. Additionally, Kira organizes its internal data
using easily-modifiable C++ class structures, and includes
an easily-customizable module for including an external
gravitational potential. These two features make it ideal for
inclusion in the hybrid method.

2.2 Orbit-sampled Monte Carlo

The MC approach assumes that the large-scale evolution
of a star cluster can be modeled as slow transitions from
one equilibrium configuration to the next. These transi-
tions are driven by two-body scatterings (relaxations) be-
tween particles in the cluster. Because it is the statistically-
predictable effect of many of these two-body scatterings
that let energy flow through the cluster, one can describe
the cumulative effect of these relaxations as a single, effec-
tive two-body encounter. We often describe these systems
in terms of their dynamical timescales (the crossing time
for a single particle) and their relaxation timescales (the av-
erage time for the velocity of a single particle to change by
a certain amount). For a system in dynamical equilibrium:

(1)

0.1
Trelax ~ logN Tdyn > Tdyn;

where N is the number of particles (see Binney and
Tremaine 2008). With a sufficiently large N, a star clus-
ter can be thought of as a series of independent orbits that
only change on a T, timescale. This assumption elimi-
nates the need to directly compute the forces upon a single
particle on an orbital timescale. Instead, we only need to
determine the shape of a star’s orbit after it has changed
velocity due to encounters with other stars on the relax-
ation timescale.

For some cases. such as a spherically asymmetric mass
distribution, the orbit of the particle must be integrated
numerically (e.g., Vasiliev 2014; Vasiliev et al. 2015); how-
ever, for most applications to large collisional star clus-
ters (such as GCs and GN) the background gravitational
potential can be assumed to be spherical. This allows
the clever theorist to determine a star’s position and
velocity by analytically sampling a random point along
its orbit. This orbit-sampling MC approach, first devel-
oped by Hénon (1971) and built upon by multiple groups
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Figure 1 Cartoon explanation of the RAPID Code The majority of particles are evolved via the MC approach, with their positions and velocities
determined by randomly sampling orbits in the spherical potential of the entire cluster. Meanwhile, a small handful of the most massive objects (the
BHs) have their positions and velocities determined by direct N-body integration inside the external potential of the MC stars. Particles from both
codes can interact via two-body encounters and strong scattering encounters, allowing energy to flow between the two systems
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(Stodoikiewicz 1982; Giersz 1998; Joshi et al. 2000; Freitag
and Benz 2001) can model stellar systems with N > 107
particles in a fraction of the time of a direct N-body simu-
lation. Unlike a direct N-body integration, the orbit calcu-
lation and dynamical encounters in the MC method scale
linearly with the number of particles; only the sorting of
particles by radius, with its characteristic NlogN com-
plexity, limits the scaling. Furthermore, the MC method
computes the interactions of particles on a relaxation
timescale, as opposed to the dynamical timescale of a di-
rect N-body integration. Put together, the computational
difficulty of the MC method scales as O(N log N) per half-
mass relaxation time, versus O(N?3) for a direct N-body ap-
proach. Because of this, the MC method can easily model
large systems that are simply beyond the reach of other
techniques.

However, the assumptions that enable the speed of the
MC method can easily break down in some of the most
interesting regions of parameter space. Once mass segre-
gation is complete, the evolution of a GC is largely de-
termined by the small number of BHs that have accumu-
lated in the core. This can consist of as few as hundreds
or even tens of BHs. Since the dynamics of these small,
spherically asymmetric systems change rapidly on an or-

bital timescale, the MC method is unable to accurately fol-
low the evolution of these BHs in the center of the clus-
ter. And since this small cluster of BHs forms the hard bi-
naries whose binding energy acts as a power source for
the entire cluster, their dynamics must be accurately mod-
eled to understand the long-term evolution of the clus-
ter.

Our orbit-sampling Cluster MC code, CMC, was first de-
veloped by Joshi et al. (2000), based on the original de-
velopments by Hénon (1971) and Stodoikiewicz (1982).
As the code considers interactions between individual
stars, CMC incorporates multiple physical processes, in-
cluding stellar evolution (Hurley et al. 2000; Hurley et al.
2002), strong three-body and four-body scatterings with
the small-N integrator Fewbody (Fregeau et al. 2004),
probabilistic three-body binary formation (Morscher et al.
2013), and physical collisions. Additionally, CMC has re-
cently been parallelized to run on an arbitrary number of
computer processors (Pattabiraman et al. 2013). This MPI
parallelizaion makes CMC an ideal code base for RAPID, as
the current parallelization scheme can be easily expanded
to allow the N-body integration to run in parallel to the
MC
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2.3 Hybrid partitioning

The cornerstone of any hybrid modeling technique is the
domain decomposition between methods. Since it is the
BHs that are driving the non-spherical, non-equilibrium
dynamics in the cluster core, the natural division is for Kira
to integrate the BHs while CMC integrates all the remaining
stars in the cluster. By default, RAPID divides the system
using one of two criteria:

+ amass criterion, which divides the system according
to a specified threshold, where particles above the
threshold are considered BHs and particles below it
are considered stars, and

+ astellar evolution criterion, in which objects identified
as BHs by stellar evolution are integrated by Kira, and
all other objects are integrated by CMC.

By default, SPRCORRmiscellaneous0SPRCORR em-
ploys the first criterion for point-mass simulations (with
a user-specified threshold mass), and the second criterion
for simulations using stellar evolution. Any mixed objects
(e.g., a BH-star binary) are evolved in CMC, in order to treat
the binary stellar evolution consistently.

There are two reasons to focus on BHs in our hybridiza-
tion scheme. The first is that by limiting the integration to a
persistent set of particles, we can avoid the the large com-
munications overhead that is incurred each time particle
must be transferred back and forth from MC to N-body.
This would occur much more frequently if, for instance, we
divided our computational domains according to radius,
with the N-body integrating particles in the core, and the
MC integrating particles in the halo (similar to McMillan
and Lightman 1984b). Secondly, by limiting the N-body
to only BHs, we sidestep the difficulties of treating binary
stellar evolution during the N-body integration. Although
Kira includes a built-in package for binary and single stel-
lar evolution (the SeBa package), it is not compatible with
the stellar evolution in CMC (the Binary Stellar Evolution of
Hurley et al. 2002). We will explore ways to integrate self-
consistent stellar evolution into the hybrid approach in a
future work.

However, in realistic clusters, we find that the segrega-
tion between BHs and stars is extreme, with the inner-
most regions of the cluster completely dominated by BHs.
In Fig. 2, we show the cumulative fraction of BHs as a func-
tion of cluster radius for a typical GC model with N = 10°
and full stellar evolution (see Rodriguez et al. 2018). Af-
ter 100 Myr, the central region of the cluster is completely
dominated by BH, with 75% of the objects less that 0.01
pc from the cluster center being BHs. These are the ob-
jects that primarily participate in the dynamical forma-
tion of binaries that drive the cluster evolution (Breen and
Heggie 2013; Morscher et al. 2015). Furthermore, any non-
spherical effects that arise from having a small number of
particles in the cluster center will be limited to these cen-
tral BHs, ensuring that the hybrid approach can correctly
integrate the correct 3D potential in the central regions.
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Figure 2 Mass Segregation of BHs in a Realistic GC—The cumulative
fraction of all objects that are BHs as a function of radius, taken from a
realistic GC model with N = 10 initial particles and realistic stellar
evolution after 100 Myr of evolution Rodriguez et al. (2018). At the
central region of the core (r < 0.01 R,) the evolution is almost entirely
dominated by the BHs, with 75% of all objects in that region being
BHs

The RAPID code builds upon the CMC parallelization
described in Pattabiraman et al. (2013), and is designed
to be run on a distributed computational system with at
least 2 parallel MPI processes: one for the MC integration,
and one for the N-body integration. An initial RAPID run
begins with all objects integrated with CMC on all avail-
able processes. After a user-specified criterion is met, a
single MPI process initializes the Kira N-body integrator.
At this point, any stars that are on that CMC process are
transferred to the remaining CMC process(es), and the BHs
are collected on the Kira process for the N-body integra-
tion. Once both integrators have been initialized, particles
can be transferred back and forth between the Kira and
CMC processes (e.g., a star becomes a BH through stellar
evolution, and is copied from CMC to Kira). Additionally,
information about the particles must frequently be com-
municated back and forth between CMC and Kira. At each
timestep, CMC needs to know the positions and velocities
of the BHs, while Kira needs to know the external potential
of the stars. See Sect. 4 for the details of the parallelization
strategy. At the end of each timestep, the information from
Kira and CMC is combined and printed to file, in order to
create a coherent cluster model. See Fig. 1.

3 RAPID timestep

At its core, the main difference between RAPID and CMC
is the computation of the orbits and positions of the BHs.
Here, we describe in detail a single RAPID timestep, high-
lighting the differences between the hybrid approach and
a standard CMC integration. See Fig. 3.
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Figure 3 Flowchart of the RAPID Code—After the hybridization is initialized, the BHs are transferred to the Kira process, while the remaining Monte
Carlo processes sample the orbital positions of the remaining stars. The communication between the Kira process and the CMC process(es) is
handled by an extension of the MPI scheme developed in CMC (Pattabiraman et al. 2013), while the N-body process can be run in serial or with
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3.1 Compute the potential
Since the cluster is assumed to be spherically symmetric,
the gravitational potential at radius r between stars k and
k + 1 can be expressed as:

My

N m;
@(r)zG(——— —’),
r ri
i=k+1

where M; = Z’;zl m;. As the stars are radially sorted, the
potential at each star can be computed recursively with a

(2)

single pass from the outermost star inwards:

P, =0,
N
MN = Zmi’
i1

1 1
Dy = Dpy1 — GMk<_ - —>,
Tk Tkel

(3)

My_1 = My — my,

where N is the number of particles, m; and r; are the mass
and radius of particle i, M; is the total mass of particles
interior to and including particle i. Note that the outer
boundary conditions at N + 1 are not associated with phys-
ical particles, but are the outer boundary points of the clus-
ter (with ry,1 = 00).

In the RAPID code, two potentials are calculated: the full
spherical potential, @, of all stars and BHs, and a MC-only
potential, @M€, computed only with the stars in CMC. The
MC potential is sent from the CMC processes to the N-body
process, and used as an external potential for the Kira in-
tegration.

3.2 Select the timestep

Since CMC and RAPID consider multiple physical pro-
cesses, the timestep selection must consider multiple rel-
evant timescales: the timescale for two-body relaxation
(Tye1), the timescales for binary-single and binary-binary
strong scatterings (Tps and Tpg), the timescale for physical
collisions (T ), the timescale for stellar evolution to con-
tribute a change in an objects mass (7sg), and the timescale
for tidal stripping of stars to alter the cluster mass (T}q).
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The simulation timestep is then selected to be the mini-
mum of each of these timescales, or

ATcnve = min(Tyel, Tes, Tegs Teolls TsEs Ttid)- (4)

The RAPID timestep is chosen in a similar fashion. The
timescale for each physical process is computed for all par-
ticles in the cluster (stars and BHs), and the minimum
(or a fraction of the minimum) is selected as the current
timestep. In Kira, this timestep determines how many dy-
namical times the N-body system will be advanced.

Unlike CMC, RAPID can produce BH multiples with an
arbitrary number of components. To compute the interac-
tion timescale for scatterings between stars and BH mul-
tiple systems, the timestep is chosen using the same pre-
scription as the Tgs and Tpp timesteps, but with the semi-
major axis of the outermost binary pair as the effective
width of the system.

The relaxation timestep, Ty, is selected as the minimum
of

Omax T er
‘ (5)

/2 32 log(y N)G?n(my + mj)?

Trel =

for all pairs of neighboring particles (Freitag and Benz
2001), where v, is the relative velocity of the two stars,
is the local number density of stars. O,y is the maximum-
allowed scattering angle for two-body relaxation. Quanti-
ties which are taken as local averages (such as the number
density, the velocity dispersion, etc.) are all computed us-
ing an averaging kernel of 40 particles. In other words, to
compute the density of stars around star r;, we average the
density over all particles from r;_yg to r;,20.

For the standard definition of the relaxation time from
Binney and Tremaine (2008), 6yax = /2. However, for the
systems considered here (particularly the highly-idealized
two-component models presented in Sect. 6), this aver-
aging can sometimes smooth out the otherwise short re-
laxation times between a heavy object and a neighboring
lighter object (particularly if there is only one heavy object
in that bin of 40 particles). For the theoretical comparison
shown in Sect. 5, we still set O, to the theoretical value
of /2, but average the above quantities over the closest 2
particles. For the numerical comparison in Sect. 6, we av-
erage over the nearest 40 particles, but use 6yax = 1 to cal-
culate the relaxation timestep, which was found (Fregeau
and Rasio 2007) to provide a good compromise between
accuracy and speed for such two-component systems.

3.3 Perform dynamical interactions

After selecting the global simulation timestep, the CMC
processes apply the standard nearest-neighbor interac-
tions (two-body relaxations, strong encounters, and colli-
sions) to successive pairs of particles in the radially sorted
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array of all cluster particles. The interactions are identi-
cal to those employed in our previous CMC studies. What
differs in the RAPID approach is how the outcomes of in-
teractions between CMC stars and Kira BHs are handled.
Specifically:

« Star-Star interactions are handled in the same fashion
as in a pure-CMC integration (see Pattabiraman et al.
2013 and references therein).

« Star-BH interactions are also handled in the same
fashion (by CMC); however, in addition to updating the
local BH information stored in CMC, the dynamical
changes to each particle are communicated back to
the Kira process once the interaction step is complete.

+ BH-BH nearest-neighbor interactions are skipped,
since such encounters will be performed with greater
accuracy in the N-body integration.

In CMC, two-body relaxations are performed by setting
nearest-neighbor stars along randomly selected hyperbolic
orbits that are consistent with their radial and tangential
velocities. The hyperbolic encounter modifies the veloci-
ties of both stars, allowing for an exchange of energy and
angular momentum. At the end of the timestep, we com-
municate the full 3D velocity changes for each BH to the
Kira process. The velocity of each particle in the N-body
is updated by adding the full-3D velocity perturbation to
previous 3D velocity of the BH.

In addition to two-body relaxations, CMC integrates
strong scattering encounters between neighboring mul-
tiples (such as binary-single neighbors or binary-binary
neighbors) using the Fewbody small-N integrator
(Fregeau et al. 2004). In RAPID, we also allow for strong
encounters between neighboring stars and BHs. However,
as Kira can produce BH higher-order multiple systems,
(triples, quadruples, etc), we have modified Fewbody to
perform scatterings between systems of arbitrary multi-
plicity, such as single-multiple and binary-multiple en-
counters. We ignore multiple-multiple scatterings, since
CMC does not track higher-order stellar triples, and BH-
BH encounters are performed naturally in Kira.

Once Fewbody has completed the scattering (which can
take several seconds of CPU time for compact higher-
order multiple systems) the output is then sent back to CMC
and Kira separately. For higher-order multiples, the full 3D
position and velocity of each BH component, relative to the
multiple center-of-mass, is sent to the Kira process. The
multiple is then reinserted into the N-body integration at
its previous position.

The only exception to this procedure is the formation of
mixed-multiple systems (a binary or higher-order multi-
ple with both BH and stellar components). We evolve any
BH-Star binaries in CMC. For higher-order multiples with
both stellar and BH components, the multiple is hierarchi-
cally broken apart into smaller components. Any star or
BH-Star is evolved by CMC, while any BH, binary BH, or
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Table 1 The model names, initial conditions, and runtimes for each of the four idealized GC models. The runtimes quoted are the
relevant walltimes for each method. We list the single runtime for each NBODY6 run, and the mean and standard deviation of the 10
CMC and RAPID runs for each cluster. The CMC and RAPID models were run on 4 Intel Xeon E5-2670 Sandy Bridge processors, while
the NBODY 6 models were run on 8 processors and 1 Nvidia Tesla M2090 GPU

Initial Conditions

Runtimes (Hours)

Model Name Mpn/Mstar MBH/Mstar Tend (tdyn) cMC NBODY6 RAPID

64k-0.01-10 0.01 10 14,000 5017 425 18+0.2
64k-0.02-10 0.02 10 20,000 84409 304 26+03
64k-0.01-20 0.01 20 10,000 26+04 554 13102
64k-0.02-20 0.02 20 20,000 53+£0.7 512 27+£06

BH multiple is evolved by Kira. The kinetic energies of the
newly-broken components are adjusted to ensure conser-
vation of energy. While this limits the modeling of BH-non
BH systems (such as low-mass X-ray binaries), these sys-
tems predominatly form with low mass BHs at the outer
region of the BH subsystem, where mixing between stars
and BHs is more common (Kremer et al. 2018b). Because
of this, these systems are less likely to participate in the
strong three-body encounters that form BH binaries in the
central regions of the cluster.

3.4 Perform stellar evolution

RAPID considers realistic stellar evolution using the Single
Stellar Evolution (SSE) and Binary Stellar Evolution (BSE)
packages of Hurley et al. (2000, 2002). This is identical to
the previous implementation in CMC. No stellar evolution
is required by the direct N-body, since the only particles
integrated by Kira are BHs. As stated above, all mixed BH-
Star objects are integrated in CMC. This is to ensure that the
binary stellar evolution for BH-star systems is performed
consistently.

3.5 Calculate new orbits and positions

After the dynamical information for each particle has been
updated, a new orbital position and velocity, consistent
with the particle’s new energy and angular momentum,
must be computed. Since the dynamical state of each par-
ticle is up-to-date in CMC and Kira, the MC and N-body
integrations can be performed in parallel by their respec-
tive processes.

3.5.1 Orbit calculation (MC)

Orbits in CMC are determined using the standard Hénon-
style orbit-sampling approach. We assume that the orbit
is entirely a function of the star’s kinetic energy and the
spherical potential of the cluster. We first constrain the ra-
dial extent of the orbit by computing the two zeros (rmin
and rmay) of the energy equation:

2E-2®(r) +J2/r* = 0. (6)

Then, we probabilistically select a new radius for the star
based on the star’s new orbit. Since the probability of find-
ing the star at a given radius is proportional to the time the

particle spends at that radius, we can express the probabil-
ity of finding the star at a specific radius as

Porydr=4 - _drvl 7)
T~ [l

We then draw a random sample from P(r), and use the
value as the particle’s position for the next timestep.

3.5.2 Orbit calculation (N-body)

Because we have dynamically perturbed the BHs though
scattering and a new external potential, the gravitational
force and its higher derivatives must be recalculated be-
fore resuming the Kira integration. Otherwise, the dynam-
ical changes to the BH velocities would produce disconti-
nuities in the higher derivatives of the force, breaking the
smoothness needed for the 4th-order Hermite integrator
to work. The N-body system is reset using Kira’s built-in
reinitialization function, which recomputes the accelera-
tion and jerk for each BH explicitly. The position and ve-
locities of all the particles (up to any changes from dynam-
ical interactions) are not modified.

Once the system has been reinitialized, the N-body con-
figuration is directly integrated with the Kira integrator for
a number of dynamical times equal to the current RAPID
timestep. For each particle, the total force is computed as
the sum of the external force, from @M€, and the internal
force computed via direct summation of the other BHs. We
apply the external CMC potential to each isolated BH and
the center-of-mass of each bound multiple system by com-
puting the acceleration and jerk from the external potential

. 8¢MC
Aext = — a}" r,
R 1 8¢MC 82¢MC

(F- 7

=—= v—-7)7) -
Jext - o7 ( ( ) )

and adding this to the acceleration and jerk of each BH us-
ing Kira’s external potential module. To simplify the calcu-
lation of the potential and its derivatives, we select 30 stars
evenly in logr from the innermost CMC star to the strip-

ping radius of the N-body simulation, and copy their radii
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and @M€
(pMC

values to the N-body integrator. The values of
and its radial derivatives are then calculated via 5th-
order Lagrange Polynomial interpolation. This technique
is inspired by the radial potential sampling used in Vasiliev
(2014).

3.6 Sort radially

Finally, once all the relevant physics has been applied and
the data collected on the CMC processes, the particles must
be sorted in order of increasing radial distance from the
GC center. The sorting is performed in parallel by all cMC
processes using the parallel Sample Sort algorithm de-
scribed in Pattabiraman et al. (2013).

4 Parallelization strategy

To incorporate the Kira integrator into CMC, we make
the following modifications to our parallelization strategy.
When the simulation starts, all particles are evolved using
the CMC scheme. As described in Sect. 2.3, the activation
criterion for the N-body integrator depends on the type of
particles being integrated. For point particle simulations,
the N-body integrator is begun immediately, whereas for
star clusters modeled with stellar evolution, the N-body
integrator is only activated once a certain number (~ 25)
of BHs have been formed. Once the activation condition is
met, we divide the entire set of particles into two sets: MC
stars and N-body BHs.

Atthe same time, we divide the existing set of p processes
into two separate groups: a single Kira process for integrat-
ing the BHs, and p — 1 CMC processes for integrating the
stars. Any MPI communication is handled by two custom
intracommunicators: one corresponding to all p processes
and one restricting communication to the p — 1 CMC pro-
cesses. The latter allows us to employ the same paralleliza-
tion strategy described in Pattabiraman et al. (2013) with
minimal modification. When the processes are split, all the
BHs are sent to the Kira process, where their coordinates
are converted from (r,v,,v;) space to the full 6-D phase
space by randomly sampling the orientation of the position
and velocity vectors. This sets the initial conditions for the
N-body integration. In addition, the Kira process main-
tains a radially-sorted array of (r,v,,v;) for all BHs. This is
done to facilitate easier communication with CMC and to
minimize the required MPI communication between CMC
and Kira every timestep. Although the CMC processes hand
over their BHs to the Kira process, the BHs are not deleted
from their local arrays. The BHs are left intact yet inert,
so that their positions and velocities can be updated upon
completion of the N-body integration.

Once the CMC and Kira MPI processes have been ini-
tialized, the hybrid method must allow both codes to in-
teract while minimizing the amount of MPI communica-
tion. This is accomplished by a series of intermediate ar-
rays, designed to store and transmit the minimum amount
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of information back and forth between the CMC and Kira.
Communication only occurs at two points during a RAPID
timestep. The first occurs after the relaxation and strong-
encounters have been performed, in order to communi-
cate the dynamical changes from CMC to Kira. The second
occurs after both systems have completed their respective
orbit computations, to communicate the new dynamical
positions and velocities from Kira back to CMC.

4.1 cMc to Kira communication

After the CMC processes have computed a new potential,
performed two-body relaxations, and any strong encoun-
ters, the dynamical changes to the BHs must be communi-
cated to the Kira process. This is done with three distinct
communications:

« The MC potential, ®MC, is sent to the Kira process as
two arrays, containing the radius and cluster potential
of every star (excluding the BHs) in CMC. The Kira
process selects 30 of these stars as described in
Sect. 3.5.2, and passes the information to the Kira
integrator to use when computing the external force.

« The two-body relaxations are communicated as an
array of objects, each containing a particle ID and a
3-dimensional Av. These weak velocity perturbations
are added to the single BHs and the centers-of-mass of
any BH multiple systems before the N-body system is
reinitialized by Kira.

+ The results of strong encounters are communicated
differently depending on the type of encounter. For
binary BHs that have experienced a strong encounter
with a star, only the change in semi-major axis and
eccentricity are communicated back to Kira. For
triples and higher-order multiples, the full position
and velocity of every BH in the multiple is
communicated to Kira. To reduce communication,
any hierarchical information is not transmitted, and
the Kira process reconstructs the hierarchy locally
before the N-body system is reinitialized.

Since all the information previously described does not
drastically change the radial positions or velocities of the
particles in the N-body (by assumption, the MC approach
requires that Av/v « 1), the dynamical state of the N-body
system is preserved between RAPID timesteps. The one
exception is strong encounters in which a single bound BH
multiple is broken into components. Since strong encoun-
ters in CMC are performed by assuming the scatterings are
isolated from the cluster potential at infinity, the resultant
components cannot be placed at the same infinite location
in the N-body system. For such systems, the components
are placed at the correct radius and random orientations,
similar to the initial transfer of BHs from CMC.

Finally, we allow for the possibility that CMC may cre-
ate new BHs, either through stellar evolution or through
strong encounters which produce single or binary BHs. We
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add any such new BHs to Kira. The new BH is then flagged
asa BH in the local array of the CMC process that created it,
to ensure it is not evolved by CMC during the next timestep.

4.2 Kira to CMC communication

After the Kira integrator has computed the orbits of the
BHs, the new dynamical state must be communicated back
to the CMC processes. First, the dynamical 6-D phase space
information for each particle in the N-body is projected
back to the reduced (r,v,,v;) basis, and copied back into
place in the intermediate star array on the Kira process.
The intermediate BH array is then divided up and com-
municated back to the respective CMC processes.

In addition to the positions and velocities, any new ob-
jects, such as single BHs, newly formed binaries, or higher-
order multiples, are communicated as new objects to the
last (p — 1) CMC processes, to be placed in the correct pro-
cess once the CMC (and intermediate BH) arrays are sorted.
For single and binary BHs, this is accomplished by send-
ing the usual (r, v,, v;) for each system and the semi-major
axis and eccentricity for any binaries to the CMC processes.
For higher-order multiples, the full 6D dynamical informa-
tion is transmitted back using the same array that sent the
strong encounters from CMC in the first communication.
Again, only the positions and velocities of the BH multi-
ple components are communicated, so the hierarchical in-
formation is reconstructed on the local CMC process after
communication.

Because the N-body integration is being performed in a
lower-density environment than the full cluster, it is pos-
sible for Kira to produce pathologically wide binaries and
higher-order multiples. This effect is particularly problem-
atic at late times, where a handful (~ 10) of BHs can eas-
ily produce binaries with separations greater than the lo-
cal inter-particle separation of stars. Since the unphysi-
cally large interaction cross-sections of these systems dras-
tically shrink the CMC timestep, we break apart any multi-
ple systems whose apocenter distance is greater than 10%
of the local inter-particle separation of stars at that radius.
The kinetic energy of the CMC stars is adjusted to ensure
energy conservation. This criterion for breaking wide bi-
naries is the same criterion used to break wide binaries
produced by Fewbody in CMC.

5 Analytic comparison

To test our new method, we first choose a simplified an-
alytic model designed to demonstrate whether RAPID can
model the dynamical friction experienced by a single BH
in a sea of stars. Theoretically, the time taken for a massive
object to spiral in to the center of a cluster can be calcu-
lated considering the rate of change of angular momentum
of the particle due to the dynamical friction experienced by
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Figure 4 Dynamical Friction on a Single Particle (N-body)—The inspiral
of a single massive BH in a Plummer sphere due to dynamical friction,
as computed by integrating equation (13) (in dashed-orange) and by
direct N-body (in blue, using the Kira integrator). The N-body results
are averaged over 50 independent realizations, with the solid blue line
and the blue shaded region indicating the median and 90-percentile
values of the radius when binned every 1 dynamical time. We
consider BHs with masses 10 and 20 times the mass of the stars (top
and bottom, respectively)

said particle (Chandrasekhar 1943; Binney and Tremaine
2008). Consider a particle of mass m on a circular orbit at
a radius r in a Plummer sphere of mass M and scale factor
a (see e.g., Heggie and Hut 2003). Many properties of the
Plummer sphere can be described analytically, such as the
mass interior to r

-3/2
M(r) :M<1+ “—2) 8)

72
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Figure 5 Dynamical Friction on a Single Particle (RAPID)—Similar to
Fig. 4, but with the numerical results from RAPID. Here the
agreement between theory and numerical experiment is somewhat
diminished, particularly for the mp/mgtar = 10 case, where the
different in inspiral times can be as high as 30%; however, the
agreement improves considerably for more massive BHs

the density at a radius r
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The specific angular momentum of our massive particle
is given by L = rV,, where V. = /GM(r)/r is the circular

(10)
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velocity at radius r. The rate of change of angular momen-
tum is then

dL (
— = V.+r

dr ) dt

Yeliis(1.0 T
T2 a? dt’

As the BH travels through the cluster, it experiences dy-
namical friction in the opposite direction of its velocity. If
we assume that the change in r is sufficiently slow that the
BH orbit remains circular, then the change in angular mo-
mentum due to dynamical friction is given by

dav,\ dr
dt

(11)

dL
dt

= Africt
fric

= —47 G*log Ap(r)x mr\/c_2, (12)
where g4 is the acceleration due to dynamical friction (Bin-
ney and Tremaine 2008, p. 645) x = erf(X) — 2X exp(—X?)/
V7, X = V,/(v/20(r)), and log A ~ log y N is the Coulomb
Logarithm, with N being the number of particles in the
cluster and y ~ 0.01. Setting equations (11) and (12) equal
yields

dr  —8wGlog Ap(r)xmr
dt V31+3(1+5)7)

(13)

which can be solved numerically for r(¢).

To test whether our proposed method can reproduce the
analytic inspiral times predicted by Equation (13), we cre-
ate 50 independent realizations of a Plummer sphere by
drawing 10* equal-mass particles from Equation (9). We
then place a single massive particle on a circular orbit at
the virial radius of the cluster. We consider mass ratios be-
tween the BH and the individual stars of 10 and 20. Each
cluster model is then integrated forward until the particle
has settled into the center. We integrate these models for-
ward using the Kira integrator (Fig. 3) and the new RAPID
approach (Fig. 4).

Because RAPID and CMC are designed to model two-
body relaxation by averaging various quantities over sev-
eral neighboring stars, special care must be taken for
RAPID to accurately model the behavior of a single par-
ticle. To that end, we set the maximum scattering angle
to the typical value of O, = /2, while we reduce the
number of neighboring particles over which the quanti-
ties in Equation (5) are averaged to 2. In other words, the
quantities used to compute the timestep consider only the
nearest particles when computing the local two-body re-
laxation timescale (while the global timestep is chosen as
the minimum of all nearest neighbor timescales). This en-
sures that the two-body relaxation timestep chosen for the
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RAPID simulations can appropriately model the dynami-
cal friction experienced by a single massive object.

As expected, the pure N-body agrees with the theoret-
ical prediction to a better degree than RAPID. However,
given the approximate nature of two-body relaxation in
RAPID, the agreement presented in Fig. 5 is encourag-
ing, and suggests that our treatment of two-body relax-
ation between Monte Carlo and N-body can treat dynami-
cal friction to within ~ 30% (the largest deviation between
theory and numerical results in the mpy/mg,, = 10 case),
with substantial improvements for more massive BHs (the
mpH /Mg = 20 case being more representative of true BH
masses in realistic clusters).

We reiterate that these results were obtained by reduc-
ing the number of particles used to compute various av-
erage quantities (Sect. 3.2). This allows the timestep to be
properly calibrated for the dynamical friction of a single
particle (the massive BH). In a standard CMC and RAPID
run, a larger averaging kernel can be used, since for real-
istic clusters with a continuous mass function, there will
be many massive and light objects within the inner-most
40 particles (which typically sets the minimum relaxation
time for the cluster). For more idealized clusters, where the
mass function is discrete and there can sometimes be only
one massive BH per 40-particle kernel (especially before
mass segregation), the averages must be computed care-
fully. In this section, we have accomplished this by setting
Omax to the standard value of 77/2 and taking the mimimum
timestep computed over averages between the nearest-
neighbor particles (usually the average between the BH
and its two neighboring stars). More generally, this reduc-
tion in timestep can also be accomplished by reducing the
maximum angle for a two-body deflection to 6. = 1. We
elect for the later in the next section, as it has been demon-
strated to work well for the idealized two-component sys-
tems considered there (Fregeau and Rasio 2007).

Asanaside, it is interesting to note that Fig. 4 provides an
excellent way to test the value of y commonly used in nu-
merical work involving the Coulomb Logarithm (log A =
log y N). Even small changes (such as y = 0.005 or y = 0.02)
produce obviouly worse agreement in Fig. 3. This suggests
that the value of y = 0.01 used in many previous studies of
multi-mass clusters is appropriate.

6 Numerical comparison

To test the effectiveness of this hybrid approach, we com-
pare our code to idealized models of GCs using similar ini-
tial conditions to Breen and Heggie (2013). We considered
four clusters with 65,536 point-mass particles. The major-
ity of particles are low-mass stars, while a small fraction
of particles are high-mass BHs. We considered different
mass ratios between BHs and stars (mpy/mig., = 10 and
mpH/Mgar = 20). We also varied the total mass in stars and
BHs (Mgy/Mgar = 0.01 and Mpy/Mstar = 0.02). For each
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set of initial conditions, we compare 10 independent re-
alizations of each model produced by RAPID to 10 mod-
els produced by CMC and by a single N-body model using
NBODY6 (Aarseth 1999). Each model was integrated until
the majority of the BHs had been ejected from the cluster.
A summary of the initial conditions and the average run-
times for each approach is listed in Table 1.

Immeditally obvious from Table 1 is that the runtimes
for RAPID are much shorter than the typical runtimes for
NBODY 6, sometimes by factors of a few hundred. Slightly
more surprising is that the RAPID runtimes also tend to be
shorter than the runtimes for CMC. This largely arises from
the improved treatment of the cluster center in RAPID. As
will be shown in the next section, RAPID reproduces the
less-dense core radii of the full N-body models better than
CMC, with the latter producing core radii 2—4 times smaller
and more compact than NBODY6. Because the timestep of
the MC is dominated by the relaxation in the densest re-
gion of the cluster, the more compact CMC models require
many more timesteps to resolve the deep core collapses,
resulting the longer runtimes.

6.1 Core and half-mass radii

For the purposes of this analysis, we assume that the mod-
els produced by NBODY6 are the “true” clusters, since a di-
rect integration technique requires the fewest simplifying
assumptions. We wish to know how well the models from
our new hybrid technique match the models produced by
the N-body approach. To that end, we focus on two typical
figures of merit in star cluster simulations: the half-mass
and core radii. In both cases, the radii are defined as the
distance from the center of the cluster. For NBODY®6, this is
calculated as a density-weighted sum:

N N
rq = E PjT;j E Pj»
j=1 j=1

(14)

where N is the total number of particles, 7, is the posi-
tion of each particle, and p; is the density of objects sur-
rounding that particle (cf. Equation 15.1, Aarseth 2003).
In CMC and RAPID, the center is fixed at = 0 by assump-
tion. The half-mass radius is the radius from the cluster
center that encloses half the cluster mass. For the core ra-
dius, all three approaches use the approximate core radius
definition from Aarseth (2003), based on the unbiased es-
timator developed in Casertano and Hut (1985). This takes
the form of a weighted sum over distances from the cluster
center out to the half-mass radius:*

N/2 N/2

217 b 2
re= | D Al =7al? [ ) 07
=1 1

(15)

In NBODY6, Equations (14) and (15) are calculated using
the full 3D position vectors (with the densities for each
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Figure 6 Half-mass and Core Radii of Idealized Clusters—The half-mass and core radii, averaged over 100 dynamical times, for all four models as
determined by direct N-body (NBODY®, in black), the Monte Carlo (CMC, in blue), and the hybrid approach (RAPID, in red). We only show one
realization from NBODY 6, while we show 10 realizations each for CMC and RAPID RAPID reproduces both the core and half-mass radii at early
times better that CMC (with the exception of the 64k-0.01-10 run, though RAPID is still much closer than CMC). On the other hand, RAPID
reproduces the core radii of the full N-body runs far more accurately than CMC, with the core radii from NBODY 6 and CMC disagreeing by up to a
factor of 3. At late times, the core radii from RAPID begins to diverge from NBODY6; this occurs when the majority of the BH system has been
ejected, and the cMC-controlled two-body relaxation dominates the BH dynamics. RAPID reverts to pure CMC when the number of BHs drops
below a certain threshold (5 BHs, indicated by the black dashed lines, (with the gray bands indicating the 1o variation across the 10 runs)
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particle computed with respect to its three nearest neigh-
bours), while for CMC and RAPID, Equation (15) is calcu-
lated from the 1D positions where the densities are cal-
culated for each particle by averaging over its 40 nearest
neighbors.

In Fig. 6, we compare the half-mass radius and core
radius for each model as determined by CMC, NBODY6,
and RAPID. While the half-mass radii are relatively con-
sistent across all models (with a maximum deviation of
~ 10%), the core radii are drastically different between
the three methods. CMC consistently underestimates the
core radius of each cluster immediately after core collapse,
with the trend persisting until all BHs have been ejected
from the cluster. This consistent underestimation of the
cluster core radius has been observed in other studies us-
ing CMC (Morscher et al. 2015) and other orbit-sampling
Monte Carlo codes. However, the core radii as determined
by RAPID agree very well with the radii reported by the di-
rect N-body. This suggests that the RAPID approach can
correctly model the dynamics of the massive BHs which
dominate the long-term evolution of GC cores.

At late times, both the half-mass and core radii pre-
dicted by RAPID begin to diverge from those determined
by NBODY6. This divergence is to be expected: as the BHs

are ejected from the cluster, the orbits of individual BHs
are determined less by their encounters with other BHs,
but by two-body relaxation with stars controlled by the
MC. Given the disagreement between the pure CMC and
NBODY6, this divergence is consistent. This suggests that
RAPID will be most effective when modeling systems that
retain a large number of BHs. Recent work (e.g., Mackey
et al. 2007; Downing 2012; Morscher et al. 2013, 2015;
Kremer et al. 2018; Askar et al. 2018) has shown that the
most massive GCs can retain hundreds to thousands of
BHs up to the present day. Given that, RAPID should be
able to correctly model realistic GCs throughout their en-
tire evolution far more accurately than a traditional MC
method.

In addition to the bulk evolution of the system, we also
want to compare the behaivor of individual stars in energy-
angular momentum space. In Fig. 7, we plot the specific en-
ergy and angular momentum of every star and BH in a sin-
gle model for the mpy/mgar = 20, Mpp /Mgy = 20 cluster.
Both models start with identical initial condition, and we
show the evolution of E and J as a function of cluster time.
After 500 dynamical times, the point of deepest core col-
lapse, the RAPID model lags behind the NBODY6 model,
having produced only one BH binary, while the two BH bi-
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Figure 7 Phase-space Scatterplots of Stars and BHs—The specific energy (potential plus kinetic) versus the specific angular momenta for each particle
at four different points during the evolution of the mpx/Mstar = 20 and Mpn/Mstar = 20 model. We show the scatter plot of £ vs J at the beginning of
the simulation, at the point of deepest collapse (500 Tayn), at the point of greatest core re-expansion (5000 Tayn), and at the end of the simulation
(20,000 Tqyn) after the majority of BHs have been ejected

naries in the NBODY6 cluster have started to push the stars
out of the central region towards higher E and J. This is
consistent with the slightly faster collapse and evolution of
the core radius described in Fig. 6. After 5000 dynamical
times, both models have ejected a number of BHs, creat-
ing sufficient energy to push stars out of lowest potential
energy states in the central region. The final snapshot (at
20,000 dynamical times) shows the stars of the NBODY®6
model in a state of deeper collapse than the RAPID model.
This is most likely due to a recent encounter between the
two remaining BH binaries pushing both onto a higher or-
bit in the cluster with a correspondingly larger E and J. The
RAPID model retains 3 BHs at the final snapshot. As these
remain in the cluster core, they manage to exclude the stars
from occupying the lowest energy states in the cluster po-
tential. This difference at late times is consistent with the
stochastic nature of BH retention observed in more realis-
tic cluster models.

6.2 Binary formation

What explains the substantial improvement in the RAPID
core radii? In Rodriguez et al. (2016a), we explored a di-
rect comparison between CMC and a state-of-the-art direct
N-body simulation of 10° particles (the DRAGON sim-
ulation, Wang et al. 2016). There, we found good agree-
ment between most of the structural parameters of the two
cluster models (e.g., the half-mass radii, the formation and
ejection rate of BHs, etc.). However, the one notable excep-
tion was the evolution of the inner parts of the cluster such
as the core radii and the inner-most Lagrange radii (the ra-
dius enclosing a certain fraction of the cluster mass). This
was especially true when considering the Lagrange radii
of only the BHs (Rodriguez et al. 20164, Fig. 7), where the
inner-most few BHs would fall into a much deeper state
of collapse (by nearly two orders of magnitude) into the
cluster center than the equivalent radii from the N-body
model. The cluster would remain in this deep state until
the formation of a BH binary, which would reverse this
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Figure 8 BH Lagrange Radii and Binary BH Formation—The number of binary BHs and the Lagrange radii for all BHs during the early stages of cluster
collapse for two example clusters. On the top, we show the number of BH binaries as a function of time in both RAPID and CMC. On the bottom, we
show the radii enclosing 10% 50% and 90% of the BHs in the cluster for the two techniques. In both cases, as the cluster collapses, RAPID forms a

binary through three-body encounters much earlier, halting the continued collapse of the cluster. CMC continues to collapse until its first binaries are

deep collapse and bring the inner Lagrange radii back into
agreement with the N-body results.

It was speculated that the reason for this discrepancy
lay in the analytic prescription that CMC employs to model
the dynamical formation of binaries during three-body en-
counters of single BHs. This prescription, from Morscher
et al. (2013), may underestimate the formation rate of BH
binaries, especially given that the probability of binary for-
mation scales as v~ in the local velocity dispersion. Be-
cause these interactions typically involve only a handful of
objects in the cluster center, where the standard MC as-
sumptions of spherical symmetry and Tye 3> Tgyn break
down, it is not obvious that CMC’s statistical approach to
binary formation based on locally-averaged quantities can
correctly model this process.” This difficulty was one of
the primary motivators for the development of RAPID: by
directly integrating the BH dynamics every timestep, we
can explicitly model the complicated three-body encoun-
ters between single BHs on a dynamical timescale.

In Fig. 8, we show the early stages of collapse for two
typical clusters as modeled by CMC and RAPID. The La-
grange radii, indicating the radii enclosing 10%, 50%, and
90% of the BHs, are nearly identical between the two
methods during the early stages of collapse (as would be
expected, since both methods model dynamical friction
through two-body MC relaxation). However, in both cases,
the RAPID models dynamically forms binaries at much
earlier stages of collapse, causing the inner-most BH La-

grange radii to rebound. The CMC models, on the other
hand, reach a much deeper state of collapse before form-
ing their first binaries.

We believe this discrepancy is responsible for the deep
collapses observed in Rodriguez et al. (2016a). In those
models, the most massive objects would naturally find
themselves in the center, and continue to collapse un-
til a binary was formed. This caused the deep collapses
noted there, which were not reproduced in the direct
N-body model. Here, the deep collapses have smoothed
out to a more continuous underprediction, since the two-
component models studied here have equal masses for all
BHs, whereas in Morscher et al. (2015), Rodriguez et al.
(20164a), it was consistently the most massive BHs decou-
pling from the rest of the core that were responsible for the
deep collapses.

6.3 BHretention

Since the heating of the cluster is primarily driven by ejec-
tion of BHs and binary hardening in the core (Breen and
Heggie 2013), it is important to compare the retention and
binary production between the different methods. In Fig. 9
we show the number of BHs retained in each cluster as a
function of time. We show the total number of BHs for
each of the 10 CMC and RAPID models, and the number
of BH binaries and BH triples present over time in the
NBODY6 model and a representative RAPID model.
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Figure 9 Number of Single and Binary BHs—The number of BHs retained in each cluster model over time. On the top, we show the total number of
BHs present in each of the four clusters (including those in bound multiple systems) for the single NBODY6 model (in black), the 10 CMC models (in
blue), and the 10 RAPID models (in red). In each case, the RAPID show better agreement with the NBODY 6 model than the pure CMC models. In
the second and third rows, we show the total number of BH binaries and BH triples (which cannot be produced in CMC) present in the NBODY 6
model (in black) and a single RAPID model (in red) as a function of time. Although highly stochastic, the number of bound multiple systems shows
good qualitative agreement between the two methods. As in Fig. 6, we show the mean and 1o times when RAPID reverts to a pure MC approach
with the white-dashed line and gray bands, respectively. For the middle and bottom rows, the white line indicated the reversion time for that run

In each of the four clusters, the RAPID models eject BHs
at a much faster rate than the CMC models, in better agree-
ment with the NBODY6 model. Although the BH ejection
rate for NBODY6 is slightly faster than the other two meth-
ods (particularly for the mpy/mg,, = 10 cases), in each case
RAPID performs far better than the pure MC approach.
This is consistent with the difference in half-mass radii
between NBODY6 and RAPID noted in the previous sec-
tion, where systems with less-massive BHs expand faster
in NBODY6 than in RAPID. Since the overall expansion of
the cluster regulates the ejection rate of BH binaries, mod-
els that expand more rapidly will eject BHs more rapidly.
For BHs in the cluster, NBODY6 and RAPID produce a sim-
ilar number of BH binaries and BH triples over time. This is
a noticeable improvement over CMC, especially when con-

sidering BH triples, which are explicitly removed from the
MC integration.

6.4 Ejected BH systems

In addition to the retained BH binaries, it is important to
compare the properties of the ejected binaries from each
cluster model. Since the semi-major axis of an ejected bi-
nary is inversely proportional to its binding energy, the or-
bital properties at ejection are an excellent proxy for the
hardening rate of the binaries within the core. If two clus-
ter models eject a similar number of binaries with compa-
rable binding energies, the energy production rate in the
core must also be comparable between the two models. In
Fig. 10 we show the semi-major axes and eccentricities for
the four NBODY6 models and the 10 RAPID realizations
of each cluster. In each case, the properties of the binaries
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ejected by the NBODY 6 models show good agreement with
those formed by the 10 RAPID models.

Although we do not show it here, the distribution of or-
bital eccentricities of the ejected binaries strongly follows
the theoretically-predicted distribution thermal distribu-
tion (p(e) x e, Jeans 1919) regardless of binary mass and
cluster properties. Because the gravitational-wave merger
time for binary BHs is determined by the semi-major axis
and eccentricity at ejection (Peters 1964), RAPID will be
able to model the merger rate of binary BHs from dense
stellar clusters with similar accuracy to a direct N-body
approach.

6.5 Energy conservation

To check the consistency of the RAPID approach, we ex-
amine the energy budget and conservation of each of the
runs. We quantify the various forms of energy, including
the kinetic and potential energy of all particles, the bind-
ing energy of multiples, and the total energy carried out
of the cluster by ejected particles. The energies are plot-
ted in Fig. 11. In addition, we also consider the virial ratio
(2K/W) and the total energy over time for each system,
as a diagnostic of the effectiveness of the method. The top
two plots show the energy budget and virial ratio for a sin-
gle representative model, while the bottom row shows the
total energy for all 10 RAPID models.

The total energy conservation of RAPID can vary over a
single run, and usually lies within 2—-3% of the initial energy
for the duration of the run. There are two main sources of
error which contribute to this energy flux. The first is the
difficulty of integrating higher-order multiples and very
close encounters accurately, particularly those that occur
in close triple systems. This issue is not limited to the Kira

integrator, and is one of the well-known issues common
to all collisional dynamics simulations (the so called “ter-
rible triples”). Although Kira does implement Keplerian
regularization for isolated two-body systems and higher-
order multiples, we still find that occasionally long-lived
triples can induce substantial jumps in energy conserva-
tion. Furthermore, as the CMC potential is only applied to
the center-of-mass of any multiple systems, any tidal ef-
fects upon the multiples from the background cluster po-
tential are not incorporated correctly. These integration
errors manifest as discontinuous jumps in the overall en-
ergy conservation, which can be seen in the bottom panels
of Fig. 10.

The second source of error arises from the integration
of orbits in a fixed external potential. This error takes two
specific forms. First, the MC method, as described above,
has an inconsistency in the computation of the poten-
tial. When a timestep is performed in CMC, the potential
is computed first, before the dynamical encounters take
place and the new orbit is calculated. However, the new
orbit is calculated using the original potential, which does
not take in to account the evolution of the cluster while
the particles are dynamically interacting. While the work
done by neighboring particles is correctly accounted for,
the work done by the change in potential upon each par-
ticle is ignored. To compensate for this energy drift, CMC
employs a technique developed by Stodoikiewicz (1982),
in which the work done by the changing potential is ex-
plicitly added to the kinetic energy of the particle at the
end of each timestep. This allows energy to be conserved
in the MC to 1 part in 10% over a run (Fregeau and Rasio
2007). In RAPID, we self-consistently correct the veloci-
ties of stars controlled by the MC in a similar fashion, but
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do not account for this energy drift in the BHs. We will
explore modifications to the external potential (such as a
time-dependent background potential for the Kira integra-
tor) in a future work.

Additionally, the 4th-order Hermite integration scheme,
while typical for collisional stellar dynamics, is known to
produce systematic energy errors when integrating many
orbits in a fixed potential (Binney and Tremaine 2008, cf.
Fig. 3.21). This produces a small but systematically posi-
tive energy drift while integrating the BHs over many or-
bits. This is particularly problematic for the Kira integra-
tor, which assumes that external potentials are weak per-
turbations to the internal dynamics of the cluster. While
this assumption is valid for a cluster evolving in a galactic
tidal field, in our current approach, the external potential
from the MC particles is much stronger than the interpar-
ticle forces of the N-body integration. Methods to improve
the long-term stability of the N-body integration, allowing
for many integrations in a fixed potential while still treat-

ing close encounters accurately, are currently being inves-
tigated.

This issue may also be exacerbated by the particular
combination of the dynamical timesteps between MC and
N-body employed here. By integrating both systems for an
identical length of time and combining the results, it is en-
tirely possible that RAPID cannot adjust to rapid dynami-
cal changes that occur during either the MC or N-body in-
tegrations. Investigations into using an adaptive timestep
between the two computational domains, similar to the ef-
fective operator splitting developed by Fujii et al. (2007)
and employed in Portegies Zwart et al. (2013), are currently
underway.

Somewhat unexpectedly, Fig. 11 shows that this net en-
ergy drift does not depend on the number of BHs present
in the cluster, but on the mass ratio between the individual
stars and BHs. For clusters with a smaller mgy/#4t4,, this
net energy drift is slower. This indicates that for more re-
alistic clusters containing many BHs and stars of different
masses, this energy drift should improve. This is confirmed
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by preliminary testing of RAPID on clusters with a realistic
initial mass function.

7 Conclusion

In this paper, we described the motivation and develop-
ment of a new hybrid technique for dynamically model-
ing dense star clusters. By combing our Cluster Monte
Carlo (CMC) code with the Kira direct N-body integrator,
we are able to combine the speed of the MC approach with
the accuracy of a direct summation. This hybrid code, the
Rapid and Precisely Integrated Dynamics (RAPID) Code
is designed to accurately model the non-equilibrium BH
dynamics that powers the overall evolution of GCs and
GNs. Given recent observational detection of BH candi-
dates in GCs, and the importance of theoretical modeling
of GC BHs to X-ray binary astrophysics (Pooley et al. 2003)
and gravitational-wave astrophysics (Rodriguez et al. 2015;
Antonini et al. 2016), understanding the dynamics of BHs
in clusters is crucial to understanding BH astrophysics.

We found that the hybrid approach is able to replicate
both the half-mass radius and the core radius for several
N-body models of idealized GCs with a much greater ac-
curacy than a traditional MC integration. Unlike a purely
MC approach, RAPID can model the highly non-spherical
and rapidly changing dynamics of the few BHs in the cen-
ter of the cluster. This suggests that the RAPID approach
can follow the dynamics of BH systems with comparable
accuracy to a direct N-body integration, but with roughly
the same integration time (with in a factor of 2) of an orbit-
sampling Monte Carlo approach.

With this technique, it will be possible to explore regions
of the GC parameter space that have remained outside
the computational feasibility of direct N-body computa-
tions. In particular, by treating the central BH subcluster
correctly, RAPID can explore regions of the GC and GN
parameter space, including clusters with massive central
BHs, that have previously been unexplored by direct colli-
sional methods.

Two issues remain to be addressed. First, the Kira N-
body integrator does not completely conserve energy in
the presence of a large external potential. This effect is
a well-known drawback of 4th-order Hermite integra-
tors, will need to be addressed. Efforts are currently un-
derway to increase the computational order of the Her-
mite predictor-corrector, improving both the accuracy and
speed of the integration (e.g., Nitadori and Makino 2008),
and to incorporate a time-dependent potential in the N-
body integrator, to account for the work done by the total
cluster potential on the BHs..

Secondly, the regularization of binaries and higher-order
multiples in Kira is based on Keplerian regularization
for sufficiently unperturbed systems (see Portegies Zwart
et al. 2001). However, this regularization does not include
any tidal effects from the external Monte Carlo potential,
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which will effect the long-term evolution of binaries re-
tained by the cluster. Incorporation of these physical ef-
fects into the regularization scheme is currently underway.

Future work will also investigate hardware acceleration
of the N-body integrator. The Kira integrator is designed
to run on the specialized GRAPE series of hardware, which
yields substantial improvements in computational speed.
When combined with the Sapporo GPU/GRAPE library
(Gaburov et al. 2009), Kira can be run on modern, dis-
tributed GPU systems with comparable performance to
the NBODY series of codes (Anders et al. 2012). Hardware
acceleration was not implemented the current RAPID ver-
sion, since we have not considered systems with suffi-
ciently large numbers of BHs for efficient GPU useage;
however, the development of the Sapporo2 library (Bédorf
et al. 2015) provides efficient GPU saturation for small-N
systems. We will explore the advantages of a RAPID inte-
gration with Sapporo2 in a future paper.

RAPID is designed to be a single-purpose code incorpo-
rating all the necessary physics to model dense star clus-
ters. However, these “kitchen-sink” codes, in which many
numerical codes are integrated into a single parallel in-
frastructure, are often difficult to extend or modify for
different purposes, particularly with regard to the shared
timestep. The energy drift noted in Sect. 6.5 arises from a
combination of the 4th-order Hermite integrator and the
particular combination of the two dynamical timesteps.
While the parallel design of RAPID makes it difficult to
explore variations on this code structure, there do exist
more modular approaches to computational stellar dy-
namics that may prove helpful. For example, the Astro-
physical Multipurpose Software Environment (AMUSE,
Portegies Zwart et al. 2013) can be used to easily swap dif-
ferent N-body integrators into a large-scale astrophysics
code. Furthermore, there exist methods of combining dif-
ferent dynamical timesteps in a single code (e.g., the Bridge
approach, Fujii et al. 2007), similar to the operator splitting
approach developed by Wisdom and Holman (1991), that
enable large multi-scale simulations to be performed with
an adaptive, shared timestep. Because this leapfrog-esque
approach is already implemented in AMUSE (as well as
several different N-body integrators), we are exploring the
possibility of integrating RAPID into AMUSE, allowing for
greater precision and flexibility in the N-body timestep.
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