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Abstract

Deep generative models, such as Generative Adversarial Networks (GANSs) or Variational Autoencoders (VAs) have
been demonstrated to produce images of high visual quality. However, the existing hardware on which these
models are trained severely limits the size of the images that can be generated. The rapid growth of high
dimensional data in many fields of science therefore poses a significant challenge for generative models. In
cosmology, the large-scale, three-dimensional matter distribution, modeled with N-body simulations, plays a crucial
role in understanding the evolution of structures in the universe. As these simulations are computationally very
expensive, GANs have recently generated interest as a possible method to emulate these datasets, but they have
been, so far, mostly limited to two dimensional data. In this work, we introduce a new benchmark for the generation
of three dimensional N-body simulations, in order to stimulate new ideas in the machine learning community and
move closer to the practical use of generative models in cosmology. As a first benchmark result, we propose a
scalable GAN approach for training a generator of N-body three-dimensional cubes. Our technique relies on two key
building blocks, (i) splitting the generation of the high-dimensional data into smaller parts, and (i) using a multi-scale
approach that efficiently captures global image features that might otherwise be lost in the splitting process. We
evaluate the performance of our model for the generation of N-body samples using various statistical measures
commonly used in cosmology. Our results show that the proposed model produces samples of high visual quality,
although the statistical analysis reveals that capturing rare features in the data poses significant problems for the
generative models. We make the data, quality evaluation routines, and the proposed GAN architecture publicly
available at https://github.com/nperraud/3DcosmoGAN.

Keywords: Generative models; Cosmological simulations; Nbody simulations; Generative adversarial network; Fast
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1 Introduction

The recent advances in the field of deep learning have ini-
tiated a new era for generative models. Generative Adver-
sarial Networks (GANs) (Goodfellow et al. 2014) have be-
come a very popular approach by demonstrating their abil-
ity to learn complicated representations to produce high-
resolution images (Karras et al. 2018). In the field of cos-
mology, high-resolution simulations of matter distribution
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are becoming increasingly important for deepening our
understanding of the evolution of the structures in the uni-
verse (Springel et al. 2005; Potter et al. 2017; Kuhlen et al.
2012). These simulations are made using the N-body tech-
nique, which represents the distribution of matter in 3D
space by trillions of particles. They are very slow to run and
computationally expensive, as they evolve the positions of
particles over cosmic time in small time intervals. Gen-
erative models have been proposed to emulate this type
of data, dramatically accelerating the process of obtaining
new simulations, after the training is finished (Rodriguez
et al. 2018; Mustafa et al. 2019).
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N-body simulations represent the matter in a cosmo-
logical volume, typically between 0.1-10 Gpc, as a set
of particles, typically between 1003 to 20003, The initial
3D positions of the particles are typically drawn from a
Gaussian random field with a specific power spectrum.
Then, the particles are displaced over time according to the
laws of gravity, properties of dark energy, and other phys-
ical effects included in the simulations. During this evolu-
tion, the field is becoming increasingly non-Gaussian, and
displays characteristic features, such as halos, filaments,
sheets, and voids (Bond et al. 1996; Dietrich et al. 2012).

N-body simulations that consist only of dark matter ef-
fectively solve the Poisson’s equation numerically. This
process is computationally expensive, as the forces must be
recalculated in short time intervals to retain the precision
of the approximation. This leads to the need for frequent
updates of the particle positions. The speed of these simu-
lations is a large computational bottleneck for cosmologi-
cal experiments, such as the Dark Energy Survey,® Euclid,”
or LSST.¢

Recently, GANs have been proposed for emulating the
matter distributions in two dimensions (Rodriguez et al.
2018; Mustafa et al. 2019). These approaches have been
successful in generating data of high visual quality, and
almost indistinguishable from the real simulations to ex-
perts. Moreover, several summary statistics often used in
cosmology, such as power spectra and density histograms,
also revealed good levels of performance. Some challenges
still remain when comparing sets of generated samples. In
both works, the properties of sets of generated images did
not match exactly; the covariance matrix of power spectra
of the generated maps differed by order of 10% with the
real maps.

While these results are encouraging, a significant diffi-
culty remains in scaling these models to generate three-
dimensional data, which include several orders of magni-
tude more pixels for a single data instance. We address
this problem in this work. We present a publicly available
dataset of N-body cubes, consisting of 30 independent in-
stances. Due to the fact that the dark matter distribution is
homogeneous and isotropic, and that the simulations are
made using periodic boundary condition, the data can be
easily augmented through shifts, rotations, and flips. The
data is in the form of a list of particles with spatial posi-
tions x, y, z. It can be pixelised into 3D histogram cubes,
where the matter distribution is represented in density
voxels. Each voxel contains the count of particles falling
into it. If the resolution of the voxel cube is high enough,
the particle- and voxel-based representations should be
able to be used interchangeably for most of the applica-
tions. Approaches to generate the matter distribution in
the particle-based representation could also be designed;
in this work, however, we focus on the voxel-based repre-
sentation. By publishing the N-body data and the accom-
panying codes we aim to encourage the development of
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large scale generative models capable of handling such data
volumes.

We present a benchmark GAN system to generate 3D
N-body voxel cubes. Our design of the novel GAN archi-
tecture scales to volumes of 256° voxels. Our proposed
solution relies on two key building blocks. First, we split
the generation of the high-dimensional data into smaller
patches. Instead of assuming that the distribution of each
patch is independent of the surrounding context, we model
it as a function of the neighboring patches. Although split-
ting the generation process into patches provides a scal-
able solution to generate images of arbitrary size, it also
limits the field of view of the generator, reducing its ability
to learn global image features. The second core idea of our
method addresses this problem by relying on a multi-scale
approach that efficiently captures global dependencies that
might otherwise be lost in the splitting process.

Our results constitute a baseline solution to the chal-
lenge. While the obtained statistical accuracy is currently
insufficient for a real cosmological use case, we achieve two
goals: (i) we demonstrate that the project is tractable by
GAN architectures, and (ii) we provide a framework for
evaluating the performance of new algorithms in the fu-
ture.

1.1 Related work

Generative models that produce novel representative sam-
ples from high-dimensional data distributions are increas-
ingly becoming popular in various fields such as image-to-
image translation (Zhu et al. 2017), or image in-painting
(Tlizuka, Simo-Serra and Ishikawa 2017) to name a few.
There are many different deep learning approaches to gen-
erative models. The most popular ones are Variational
Auto-Encoders (VAE) (Kingma and Welling 2014), Au-
toregressive models such as PixelCNN (van den Oord
et al. 2016), and Generative Adversarial Networks (GAN)
(Goodfellow et al. 2014). Regarding prior work for generat-
ing 3D images or volumes, two main types of architectures
— in particular GANs — have been proposed. The first type
(Achlioptas et al. 2018; Fan et al. 2017) generates 3D point
clouds with a 1D convolutional architecture by produc-
ing a list of 3D point positions. This type of models does
not scale to cases where billion of points are present in a
simulation, posing an important concern given the size of
current and future N-body simulations. The second type
of approaches, including Wu et al. (2016), Mosser et al.
(2017), directly uses 3D convolutions to produce a volume.
Although the computation and memory cost is indepen-
dent of the number of particles, it scales with the number
of voxels of the desired volume, which grows cubically with
the resolution. While recursive models such as PixelCNN
(van den Oord et al. 2016) can scale to some extent, they
are slow to generate samples, as they build the output im-
age pixel-by-pixel in a sequential manner. We take inspira-
tion from Pixel CNN to design a patch-by-patch approach,
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rather than a pixel-by-pixel approach, which significantly
speeds up the generation of new samples.

As mentioned above, splitting the generation process
into patches reduces the ability of the generator to learn
global image features. Some partial solutions to this prob-
lem can already be found in the literature, such as the
Laplacian pyramid GAN (Denton et al. 2015) that provides
a mechanism to learn at different scales for high quality
sample generation, but this approach is not scalable as the
sample image size is still limited. Similar techniques are
used in the problem of super-resolution (Ledig et al. 2017;
Lai et al. 2017; Wang et al. 2018). Recently, progressive
growing of GANs (Karras et al. 2018) has been proposed to
improve the quality of the generated samples and stabilize
the training of GANs. The size of the samples produced
by the generator is progressively increased by adding lay-
ers at the end of the generator and at the beginning of the
discriminator. In the same direction, Brock et al. (2019),
Luci¢ et al. (2019) achieved impressive quality in the gen-
eration of large images by leveraging better optimization.
Problematically, the limitations of the hardware on which
the model is trained occur after a certain increase in size
and all of these approaches will eventually fail to offer the
scalability we are after.

GANs were proposed for generating matter distribu-
tions in 2D. A generative model for the projected mat-
ter distribution, also called a mass map, was introduced
by Mustafa et al. (2019). Mass maps are cosmological ob-
servables, as they are reconstructed by techniques such
as, for example, gravitational lensing (Chang et al. 2018).
Mass maps arise through integration of the matter den-
sity over the radial dimension with a specific, distance-
dependent kernel. The generative model presented in
Mustafa et al. (2019) achieved very good agreement with
the real data several important non-Gaussian summary
statistics: power spectra, density histograms, and Minkow-
ski functionals (Schmalzing et al. 1996). The distributions
of these summaries between sets of generated and real data
also agreed well. However, the covariance matrix of power
spectra within the generated and real sets did not match
perfectly, differing by the order of 10%.

A generative model working on 2D slices from N-body
simulations was developed by Rodriguez et al. (2018).
N-body slices have much more complex features, such
as filaments and sheets, as they are not averaged out in
projection. Moreover, the dynamic range of pixel values
spans several orders of magnitude. GAN’s presented by Ro-
driguez et al. (2018) also achieved good performance, but
only for larger cosmological volumes of 500 Mpc. Some
mismatch in the power spectrum covariance was also ob-
served.

Alternative approaches to emulating cosmological mat-
ter distributions using deep learning have been recently
been proposed. Deep Displacement Model (He et al. 2018)
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uses a U-shaped neural network that learns how to mod-
ify the positions of the particles from initial conditions to
a given time in the history of the universe.

Generative models have also been proposed for solving
other problems in cosmology, such as generation of galax-
ies (Regier et al. 2015), adding baryonic effects to the dark
matter distribution (Troster et al. 2019), recovery of cer-
tain features from noisy astrophysical images (Schawinski
etal. 2017), deblending galaxy superpositions (Reiman and
Gohre 2019), improving resolution of matter distributions
(Kodi Ramanabh et al. 2019).

2 The N-body data

2.1 Cosmological N-body simulations

The distribution of matter, dark matter and other particles
in the universe at large scale, under the influence of gravity,
forms a convoluted network-like structure called the cos-
mic web (Bond et al. 1996; Coles and Chiang 2000; Forero-
Romero et al. 2009; Dietrich et al. 2012). This distribu-
tion contains information vital to the study of dark mat-
ter, dark energy, and the very laws of gravity (Abbott et al.
2018; Hildebrandyt et al. 2017; Joudaki et al. 2017). Simula-
tions of these various computational cosmological models
(Springel 2005; Potter et al. 2017) lead to understanding
of the fundamentals of cosmological measurements (Fos-
alba et al. 2015; Busha et al. 2013), and other properties
of the universe (Springel et al. 2005). These simulations
are done using N-body techniques. N-body techniques
simulate the cosmic web using a set of particles in three
dimensional space, and evolve their positions with time.
This evolution is governed by the underlying cosmological
model and the laws of gravity. The end result of an N-body
simulation is the position of billions of particles in space,
as depicted in Fig. 1. Unfortunately, N-body simulations
are extremely resource intensive, as they require days, or
even weeks of computation to produce them (Teyssier et al.
2009; Boylan-Kolchin et al. 2009). Moreover, a large num-
ber of these N-body simulations is needed to obtain good
statistical accuracies, which further increases the compu-
tational requirements.

This computational bottleneck opens up a leeway for
deep learning and generative models to offer an alterna-
tive solution to the problem. Generative models have the
potential to be able to learn the underlying data distribu-
tion of the N-body simulations using a seed set of N-body
samples to train on.

There are multiple techniques for running N-body sim-
ulations, which agree well for large scales, but start to di-
verge for small scales, around wavenumber k = 1 Mpc™!
(Schneider et al. 2016). Moreover, baryonic feedback can
also affect the small scale matter distribution (Mead et al.
2015; Huang et al. 2019; Barreira et al. 2019), and large un-
certainty remains for these scales.
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Figure 1 An example N-body simulation at current cosmological
time (redshift z= 0). The density is represented by particle positions in
3D. In this work, the generative models use the representation of this
distributon that is based on 3D voxel histogram of the particle
positions

2.2 Data preprocessing

We produce samples of the cosmic web using standard N-
body simulation techniques. We used L-PICOLA Howlett
et al. (2015) to create 30 independent simulations. The
cosmological model used was ACDM with Hubble con-
stant Hy = 500/ = 350 km/s/Mpc,? dark energy density
2, = 0.724 and matter density £2,, = 0.276. We used the
particle distribution at redshift z = 0. The output of the
simulator is a list of particles 10243 3D positions. To obtain
the matter distribution, we first convert it to a standard
2563 3D cube using histogram binning. We consider these
cubes as the raw data for our challenge and can be down-
loaded at https://zenodo.org/record/1464832. The goal is
to build a generative model able to produce new 3D his-
tograms. While 30 samples might seem as a low number of
samples to train a deep neural network, each sample con-
tains a large number of voxels. One can also expand the
training data by relying on data augmentation, using vari-
ous rotations and circular translations as described in Ap-
pendix 2. Problematically, the dynamic range of this raw
data spans several orders of magnitude and the distribu-
tion is skewed towards smaller values, with a very elon-
gated tail towards the larger values. Empirically, we find
that this very skewed distribution makes learning a gen-
erative model difficult. Therefore, we first transform the
data using a logarithm-based function, as described in Ap-
pendix 1. Note that this transform needs to be inverted be-
fore the evaluation procedure.

2.3 Evaluation procedure

The evaluation of a GAN is not a simple task Borji (2019),
Grnarova et al. (2019). Fortunately, following Rodriguez
et al. (2018), we can evaluate the quality of the generated
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samples with three summary statistics commonly used in
the field of cosmology.

1. Mass histogram is the average (normalized)
histogram of the pixel value in the image. Note that
the pixel value is proportional to the matter density.

2. Power spectrum density (or PSD) is the amplitude of
the Fourier modes as a function of their frequency
(the phase is ignored). Practically, a set of bins is
defined and the modes of similar frequency are
averaged together.

3. Peak histogram is the distribution of maxima in the
density distribution, often called “peak statistics’, or
“mass function” Peaks capture the non-Gaussian
features present in the cosmic web. This statistic is
commonly used on weak lensing data (Kacprzak et al.
2016; Martinet et al. 2017). A peak is defined as a
pixel greater than every pixel in its 2-pixels
neighbourhood (24 pixels for 2D and 124 for 3D).

Other statistics such as Minkowski functionals, three point
correlation functions, or phase distributions, could be con-
sidered. Nevertheless, we find that the three aforemen-
tioned statistics are currently sufficient to compare differ-
ent generative models.

Distance between statistics We define a score that re-
flects the agreement of the 3 aforementioned cosmolog-
ical measures. Problematically, the scalars forming the 3
vectors representing them have very different scales and
their metrics should represent the relative error instead
of the absolute one. For this reason, we first compute the
logarithm (in base 10) of the computed statistics s. As all
statistics are positive but not strictly positive, we add a
small value € before computing the logarithm, i.e., sjog =
log;(s + €). € is set to the maximum value of the statistic
averaged over all real samples divided by 10°.

At this point, the relative difference connects to the dif-
ference of the real and fake sio, ie.: 5], —s{og ~log, z—;
One could quantify the error using a norm, i.e: |[Esj,, -
Esfog I. However, such a distance does not take into account
second-order moments. Rather, we take inspiration from

the Fréchet Inception Distance (Heusel et al. 2017). We
start by modeling the real and fake log statistics s, s{og as
two multivariate Gaussian distributions. This allows us to
compute the Fréchet Distance (FD) between the two dis-
tributions (Fréchet 1957), which is also the Wasserstein-2.
The FD between two Gaussian distribution with mean and
covariance (", C") and (m/, ) is given by Dowson and
Landau (1982):

d*((m",C"), (!, 1))
= |m" = |+ Te(C" + & —2C" ). (1)

Note that Dowson and Landau (1982) also proves that
Tr(C" + G/ —2C" ') is a metric for the space of covariance


https://zenodo.org/record/1464832

Perraudin et al. Computational Astrophysics and Cosmology

matrices. We choose the FD over the Kullback—Leibler
(KL) divergence for two reasons: (a) the Wasserstein dis-
tance is still an appropriate distance when distributions
have non-overlapping support and (b) the KL is computa-
tionally more unstable since the covariance matrices need
to be inverted.

2.4 N-Body mass map generation challenge
Using the FD, we define a score for each statistic as

1

5= 2((m", Cr), (!, Cf)’

()

where m, C are computed on the log statistics, i.e: m" =
Esjog> m = Eslfog. Along with this manuscript, we release
our dataset and our evaluation procedure in the hope that
further contributions will improve our solution. All in-
formation can be found at https://github.com/nperraud/
3DcosmoGAN. We hope that this dataset and evaluation
procedure can be a tool for the evaluation of GANSs in gen-
eral. Practically, these cosmological statistics are very sen-
sitive. We observed two important properties of this prob-
lem. First, a small variation in the generated images still
has an impact on the statistics. The statistics can be highly
affected by high density regions of the N-body data, and
these regions are also the most rare in the training set. Sec-
ond, while mode collapse may not directly affect the mean
of the statistics, it can affect their second order moment
significantly. We observed that obtaining a good statistical
agreement (and hence a high score), is much more difficult
than obtaining generated images that are indistinguishable
for the human eye, especially for the 2-dimensional case.
We found that the problems of high data volume, large dy-
namic range of the data, and strict requirement on good
agreement in statistical properties of real and generated
samples, pose significant challenge for generative models.

Interpretation of the S* scores  We report the S* scores for
the 3D case in Sect. 4 and the web page hosting the source
code also includes baseline scores for the 2D case. We
would like to emphasize that these scores are mostly suit-
able to compare two generative models applied to the same
distribution. It is a priori unclear whether these scores
provide a meaningful comparison when considering two
generative models trained on different distributions. We
therefore refrain from relying on such scores to compare
the generative models trained on 2D and 3D data since
the latter gives access to correlations along the third di-
mension that are absent from the 2D data. Finally, while
in theory, the §* score is unbounded and can be arbitrar-
ily large as d*> — 0, its empirical evaluation is, in practice,
limited by the estimation error of d” that depends on the
number of samples used to estimate the mean vectors and
the covariance matrices (7", C") as well as the moments of
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the estimated statistics. In the case where the training set
contains a large number of samples, one would expect the
training score to be indicative of the score of the true dis-
tribution. One can see that the estimation error of the first
term of (1) depends mostly on the variance of the statis-
tic, while for the second term, it depends on the moments
of order 3 and 4. Hence, the estimated score will reflect
the variance of the estimated statistics given the number
of samples used. A high score therefore means less vari-
ance within the corresponding statistic.

3 Sequential generative approach

We propose a novel approach to efficiently learn a Gen-
erative Adversarial Network model (see Sect. 3.1) for 2D
and 3D images of arbitrary size. Our method relies on two
building blocks: (1) a multi-scale model that improves the
quality of the generated samples, both visually and quanti-
tatively, by learning unique features at different scales (see
Sect. 3.2), and (2) a training strategy that enables learn-
ing images of arbitrary size, that we call “conditioning on
neighborhood” (see Sect. 3.3).

3.1 Generative adversarial networks (GANs)

Generative Adversarial Networks (GAN) rely on two com-
peting neural networks that are trained simultaneously:
the generator G, which produces new samples, and the dis-
criminator D, which attempts to distinguish them from the
real ones. During training, it is the generator’s objective
to fool the discriminator, while the discriminator resists
by learning to accurately discriminate real and fake data.
Eventually, if the optimization process is carried out suc-
cessfully, the generator should improve to the point that its
generated samples become indistinguishable from the real
one. In practice, this optimization process is challenging
and numerous variants of the original GAN approach have
been proposed, many of them aiming to improve stability
including e.g. Roth et al. (2017), Gulrajani et al. (2017), Ar-
jovsky et al. (2017). In our work, we rely on the improved
Wasserstein GAN (WGAN) approach introduced in Gul-
rajani et al. (2017). The latter optimizes the Wasserstein
distance instead of the Jensen-Shannon divergence and pe-
nalizes the norm of gradient of the critic instead of using
a hard clipping as in the original WGAN (Arjovsky et al.
2017). The resulting objective function is

i B, 1Pe)]

- E [D®)]

x~Py

+3 B [(Iv:0@],- 1))

where P, is the data distribution and P, is the genera-
tor distribution implicitly defined by ¥ = G(z), z ~ p(z).
The latent variable z is sampled from a prior distribution
p, typically a uniform or a Gaussian distribution. Eventu-
ally, P; is defined implicitly by sampling uniformly along
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I - 32x32x32

M;

Upscale

PatchGAN

necessary

I, - 64x64x64

Figure 2 Multiscale approach using multiple intermediary GANs, each learning features at different scales and all trained independently from each
other. The same approach can in principle be extended to produce higher-resolution images, potentially adding more intermediary GANSs if

I - 256x256x256
M

Upscale
PatchGAN

straight lines between pair of points sampled from the true
data distribution P, and the generator distribution IP,. The
weight A is the penalty coefficient.

3.2 Multi-scale model

Our multi-scale approach is inspired by the Laplacian
pyramid GAN (Denton et al. 2015). We refer to three im-
age types of different sizes, namely I35 = 32 x 32 x 32,
I, = 64 x 64 x 64, I} =256 x 256 x 256 ¢ pixels, where I,
is a down-scaled version of I; and I3 is a down-scaled ver-
sion of I. The multi-scale approach is shown in Fig. 2 and
uses three different GANs, M;, M, and M3, all trained in-
dependently from each other, and can therefore be trained
in parallel. We train GAN M3 to learn the data distribution
of images I3, while the GANs M, and M; are conditioned
on the images produced by M3 and M, respectively. In our
implementation, we take M3 to be a normal Deep Convo-
lution GAN (DCGAN) that learns to produce down-scaled
samples of size I3. We design GANs M, and M; to have
the following properties: (1) they produce outputs using a
sequential patch-by-patch approach and (2) the output of
each patch is conditioned on the neighboring patches. This
procedure allows handling of high data volume, while pre-
serving the long-range features in the data. Moreover, dif-
ferent GANs learn salient features at different scales, which
contribute to an overall improved quality of the samples
produced the final GAN M, . Further details regarding the
implementation details are provided in Appendix 3.

3.3 Conditioning on neighborhoods

The limited amount of memory available to train a GAN
generator makes it impractical to directly produce large
image samples. Using current modern GPUs with 16 GB
of RAM and a state-of-the-art network architecture, the
maximum sample size we were allowed to use was 323,
which is far from our target taken to be 256. In order
to circumvent this limitation, we propose a new approach
that produces the full image (of size 256%) patch-by-patch,
each patch being of smaller size (323 in our case). This
approach is reminiscent of the Pixel-CNN (van den Oord
et al. 2016), where 2D images are generated pixel-by-pixel,

rather than the entire picture being generated at once. In-
stead of assuming that the distribution of each patch is in-
dependent of the surrounding context, we model it as a
function of the neighboring patches. The generation pro-
cess is done using a raster-scan order, which implies that
a patch depends on the neighboring patches produced be-
fore the current patch. The process illustrated in Fig. 3 is
for the 2D case with three neighboring patches; the gener-
alization to three dimensions is straightforward as it sim-
ply requires seven neighboring 3D patches.

In the generator, the neighborhood information, i.e. the
borders (3 patches for 2D, 7 cubes for 3D), is first encoded
using several convolutional layers. Then it is concatenated
with the latent variable, is inputed to a fully connected
layer before being reshaped into a 3D image. At this point,
the down-sampled version of the image is concatenated.
After a few extra convolutional layers, the generator pro-
duces the lowest rightmost patch with the aim of making it
indistinguishable to the patch from the real data. The gen-
erator architecture is detailed in Fig. 4. In the case where
there is no neighborhood information available, such as at
the boundary of a cube, we pad with zeros. The discrim-
inator is given images containing four patches where the
lower right patch is either the real data or the fake data
generated by the generator. The generator only produces
patches of size 323, irrespective of the size of the origi-
nal image. This way this method can scale to any image
size, which is a great advantage. The discriminator only
has access to a limited part of the image and ignores the
long-range dependencies. This issue, however, is handled
by the multi-scale approach described in the previous sec-
tion. We actually tried a model only conditioned on the
neighborhoods as detailed in Appendix 4.3. It ended up
performing significantly worse than using the multi-scale
approach.

4 Experimental results

Our approach relies on a recursive approach that progres-
sively builds a 3D cube, starting from a low-resolution and
upsampling it at every step. We detail and analyze each
step separately in order to understand the impact of each
of these steps on the final performance of the full model.



Perraudin et al. Computational Astrophysics and Cosmology

(2019) 6:5 Page 7 of 17

Real patch

border cubes are used instead of 3 border patches
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Figure 3 Left: Sequential Generation. The image is generated patch-by-patch. Right: Upscaling GAN conditioned on neighborhood information.
Given border patches B1, B2 and B3, and the down-scaled version of the 4th patch, the generator generates the 4th fake patch. The discriminator
also receives the border patches, as well as either an original or fake patch from the generator. The principle is similar in 3D, with the difference that 7
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Figure 4 Details of the upsampling generator. The borders/cubes are
encoded using several convolutional layers

We also compare the results of our multi-scale approach
to a simpler uni-scale model. Additional details regard-
ing the network architectures and various implementation
choices are available in Appendix 3.

4.1 Scale by scale analysis of the pipeline

In the following, we describe our model that relies on three
different GANs, namely M;, M, and M3, to generate sam-
ples at distinct resolutions. We detail each step of the gen-
eration process below.

Step 1: low-scale generation (latent code to I3) The low
scale generation of a sample of size 323 is performed by
the WGAN AMs;. The architecture of both the generator
and the discriminator is composed a 5 3D convolutional
layers with kernels of size 4 x 4 x 4. We use leaky ReLu
non-linearity. Further details can be found in Table 2 of
Appendix 3.

Figure 5 shows the middle slice from 16 3D samples I3
drawn from the generator of Ms; compared to real sam-
ples. In Fig. 6, we additionally plot our evaluation statistics
for the 30 samples corresponding to the total number of

N-body simulations used to build the dataset. The gener-
ated samples drawn from M3 are generally similar to the
true data, both from a visual and from a statistical point
of view, although one can observe slight disagreements at
higher frequencies. Note that the low number of samples
and the size of each of them does not allow us to compute
very accurate statistics, hence limiting our evaluation.

Step 2: up-scale (I3 to I;,) Upscaling the sample size from
323 to 643 is performed by the WGAN M,. The architec-
ture is similar to M3 (see Table 3 in Appendix 3), except
that the border patches are first encoded using three 3D
convolutional layers and then concatenated with the latent
variables before being fed to the generator.

In order to visualize the quality of up-scaling achieved by
this first up-sampling step independently from the rest of
the pipeline, we first down-scale the real 256 samples to
323, and then provide them as input /3 to the WGAN M,.
We then observe the result of the up-scaling to 64°. Fig-
ure 7 shows slices from some generated I; samples, as well
as the real down-scaled I3 image and the real I, image. We
observe a clear resemblance between the up-scaled fake
samples and the real samples. The statistics for this step
of the generation process are shown in Fig. 8. We observe
more significant discrepancies for features that rarely oc-
cur in the training set such as for large peaks. This is how-
ever not surprising as learning from few examples is in
general a difficult problem.

Step 3: up-scale (I, to I;) The final upscaling from 643
to 256° is performed by the WGAN M,. The architec-
ture of both the generator and the discriminator of M;
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Real 323 Fake 323

Figure 5 8-down-scaled sample generation (323 cubes). Middle slice from 16 real and 16 fake WGAN M3 samples. Video:
https://youtu.be/uLwrF73wX2w or Additional file 1
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Figure 6 Statistics of the 8-downscaled 32 cubes. The fake samples are generated from WGAN Ms. The power spectrum density is shown in units
of h Mpc™, where h = Ho/100 corresponds to the Hubble parameter

-- iownsam 3 -e-
Figure 7 Up-scaling a 32° cube to 64°. Left and right: middle slices from 4 real and fake 64> samples. The fake is generated by conditioning the
WGAN M, on the real down-scaled 323 cube (center). Video: https://youtu.be/IIPoK8sIShU or Additional file 2
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Figure 8 Statistics of the samples produced by M,. The fake samples are generated by conditioning WGAN M, on the real down-scaled 323
samples. The power spectrum density is shown in units of h Mpc™', where h = Hy/100 corresponds to the Hubble parameter

Real 2563

Real downsampled 643

Fake 2563

Figure 9 Upsampling a 64> cube to 256°. Left and right: middle slices from 2 real and fake 256° samples. The WGAN M that generates the fake
sample is conditioned on the real image down-scaled to 64° (center). Video: https://youtu.be/guUYP8ZOoVU or Additional file 3

is composed of eight 3D convolutional layers with incep-
tion modules Szegedy et al. (2014). The inception modules
have filters of three different sizes: 1 x 1 x 1,2 x 2 x 2
and 4 x 4 x 4. The input tensor is convolved with all three
types of filters, using padding to keep the output shape the
same as the input shape. Eventually, the three outputs are
summed to recover the desired number of output chan-
nels.

To visualize the quality of up-scaling achieved by the fi-
nal up sampling step, we down-scale the real 256> sam-
ples to 64°, and then provide them as inputs I, to the
WGAN M;. Figure 9 shows the middle slices of two real
and fake samples [;. Although, the up-sampling factor is
4, the WGAN M, is able to produce convincing samples
even in terms of high frequency components.

4.2 Full multi-scale pipeline

Sample generation The generation process used to pro-
duce new samples proceeds as follows. First, a latent vari-
able is randomly drawn from the prior distribution and is
fed to M3 which produces a 322 low-resolution cube. The
latter is then upsampled by M. At first, all border patches
shown in Fig. 3 are set to zero. Then the 643 cube is built re-
cursively (in 2% = 8 steps) where at each step, the previously
generated patches are re-fed as borders into the generator.
The generation of the full 256> cube is done in a similar
fashion by M;. Note that this last step requires the gen-
eration of 8% = 512 patches/smaller cubes. An illustration,
adapted to the 2D case for simplicity, is shown in Fig. 10.
The full generation process takes around 7 seconds to pro-
duce one sample of size 256 using a single GPU node with
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Figure 10 Up-scaling patches in 3-steps, using 3 different WGANSs
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24 cores compared to approximately 6-8 hours for a fast
and approximate L-PicoLA (Howlett et al. 2015) simula-
tor running on two identical nodes.

Quantitative results Figure 11 shows a few slices from a
3D fake I; image generated using the full pipeline, along-
side a random real I; image. Figure 12 shows the summary
statistics of 500 GAN generated samples, compared to that
of real samples. The visual agreement between the real
and generated samples is good, although a trained human
eye can still distinguish between real and fake samples. In
particular, a careful visualization reveals that the transi-
tions between the different patches are still imperfect and
that the generated samples have less long range filaments
than the true samples. The summary statistics agree very
well for the middle range of mass density, with slight dis-
agreements at the extremes. The shape of the power spec-

Real 2563

Figure 11 Middle slice from real and generated 256° samples. The GAN-generated samples are produced using the full multi-scale pipeline. Videos:
32-scale: https://youtu.be/ulwrF73wX2w; 64-scale: https://youtu.be/xI2cUuk3DRc; 256-scale: https://youtu.be/nWXPEDVEalA or Additional file 4
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Figure 12 Summary statistics of real and GAN-generated 256 images using the full multi-scale pipeline. The power spectrum density is shown in
units of h Mpc™", where h = Hy/100 corresponds to the Hubble parameter
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Figure 13 Statistics for the WGAN My producing fake 2563 cubes. The fake samples are generated by conditioning WGAN M on the real cube
down-scaled to 643. The power spectrum density is shown in units of h Mpc™, where h = Ho/100 corresponds to the Hubble parameter
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Table 1 Scores computed for the 30 GAN-generated 256°

images using the full multi-scale pipeline. We refer to (2) and (1)
for details. The reference is computed by comparing two sets of
15 real samples. It represent the best score that can be achieved

Score §* PSD  Mass hist.  Peak hist.
Multiscale  2.72 5.72 0.63
Uniscale 0.01 0.15 0.07
Reference 816 1433 8.17

trum density (PSD) matches well, but the overall amplitude
is too high for most of the k range. Naturally, we would
expect the error of the multi-scale pipeline to be the re-
sult of the accumulation of errors from the three upsam-
pling steps. In practice, we observe a lot of similarities be-
tween the statistics shown in Fig. 13 (from the last upscal-
ing step) and in Fig. 12 (from the full pipeline). Finally, Ta-
ble 1 presents the scores obtained for the 30 cubes of size
2563 using the full multi-scale pipeline as generated by the
full GAN sequence. As explained in Sect. 2.4, the reference
score gives an indication of the variability within the train-
ing set, i.e, how similar are two independent sample sets
from the training set. The reference mass histogram score
is much higher than the PSD and the Peak histogram due
to the fact that this statistic has in general much less vari-
ance. For that reason, it is probably easier to estimate, as
indicated by the score of our pipeline. Cosmological anal-
yses typically require the precision of less than few percent
on these summary statistics, which is achieved by the GAN
method only for specific scales, peak and density values.

The scores of multiscale approach are much higher than
the ones of the simpler single-scale approach described in
the following section.

4.3 Comparison to the single scale model

In order to evaluate the effectiveness of the multi-scale
approach, we compare our model to a uni-scale variant
that is not conditioned on the down-sampled image. Here
each patch is generated using only its neighboring 7 border
patches and a latent variable that is drawn from the prior
distribution. More simply, it is a direct implementation of

the principle displayed in Fig. 3 left in 3D, where the dis-
criminator is not conditioned on the down-sampled image.
Animportant issue with the uni-scale model is that the dis-
criminator never s more than 642 pixels at once. Hence, it
is likely to fail to capture long-range correlations. Practi-
cally, we observed that the training process is unstable and
subject to mode collapse. At generation time. the recursive
structure of the model often lead to repeating pattern. The
resulting models were of bad quality as shown in Fig. 14
and 15. This translates to the score presented in Table 1.
This experiment demonstrates that conditioning on data
at lower scales does play an important role in generating
samples of good quality.

5 Conclusion

In this work we introduced a new benchmark for the gen-
eration of 3D N-body simulations using deep generative
models. The dataset is made publicly available and con-
tains matter density distributions represented as cubes of
256 x 256 x 256 voxels. While the performance of the gen-
erative model can be measured by visual inspection of the
generated samples, as commonly done on datasets of nat-
ural images, we also offer a more principled alternative
based on a number of summary statistics that are com-
monly used in cosmology. Our investigation into this prob-
lem has revealed that several factors make this task chal-
lenging, including: (i) the sheer volume of each data sam-
ple, which is not straightforwardly tractable using conven-
tional GAN architectures, (ii) the large dynamic range of
the data that spans several orders of magnitude; which re-
quires a custom-designed transformation of the voxel val-
ues, and (iii) the need for high accuracy required for the
model to be practically usable for a real cosmological study.
Adding to the difficulties of (i) and (ii), this also requires
accurately capturing features that are rare in the training
set.

As a first baseline result for the newly introduced bench-
mark, we proposed a new method to train a deep gener-
ative model on 3D images. We split the generation pro-
cess into the generation of smaller patches as well as con-
dition on neighboring patches. We also apply a multi-
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https://youtu.be/fxZEQHEGUNA or Additional file 5

Fake 256% — uniscale

Figure 14 Middle slice from real and generated 2563 samples. The GAN-generated samples are produced using the full uni-scale pipeline. Video:
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Figure 15 Summary statistics of real and GAN-generated 256° images using the full uni-scale pipeline. The power spectrum density is shown in

scale approach to learn multiple WGAN:S at different im-
age resolutions, each capturing salient features at differ-
ent scales. This approach is inspired by Laplacian pyra-
mid GAN (Denton et al. 2015) and by PixelCNN (van den
Oord et al. 2016), which have both been developed for 2D
data.

We find that the proposed baseline produces N-body
cubes with good visual quality compared to the train-
ing data, but significant differences can still be perceived.
Overall, the summary statistics between real and gener-
ated data match well, but notable differences are present
for high voxel values in the mass and peak histograms. The
power spectrum has the expected shape, with amplitude
that is too high for most of the k values. The overall level
of agreement is promising, but can not yet be considered
as sufficient for practical applications in cosmology. Fur-
ther development will be needed to achieve this goal; in

order to encourage it, we have made the dataset and the
code publicly available.

In our current model, the discriminator only has ac-
cess to a partial view of the final image. The dependen-
cies at small scale that may exist between distant patches
are therefore not captured by the discriminator. Extending
this model to allow the discriminator to have a more global
view would be the next logical extension of this work. We
have also observed empirically that the extreme right tail
of the histogram is often not fully captured by the gen-
erator. Designing architectures that would help the gen-
erative model to handle large dynamic range in the data
could further improve performance. One could also get
further inspiration from the literature on generative mod-
els for video data, such as Vondrick et al. (2016), Xiong
et al. (2018), Saito et al. (2017). Given the observations
made in our experiments, one might for instance expect
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that the two stage approach suggested in Saito et al. (2017)
could address some of the problem seen with the right tail
of the distribution.

Another interesting research direction would be to con-
dition the generation process on cosmic time or cosmo-
logical parameters. One could for instance rely on a con-
ditional GAN model such as Mirza and Osindero (2014).

Appendix 1: Input data transformation

The general practice in machine learning is that the input
data is first standardized before giving it to any machine
learning model. This preprocessing step is important as
many neural networks and optimization blocks are scale-
dependent, resulting is most architectures working opti-
mally only when the data is appropriately scaled. Problem-
atically, because of the physical law of gravity, most of the
universe is empty, while most of the matter is concentrated
in a few small areas and filaments. The dataset had the
minimum value of 0 and the maximum value of 185,874,
with most of the voxels concentrated close to zero, and
significantly skewed towards the smaller values and has
an elongated tail towards the larger ones. Even with stan-
dardization, it is difficult for a generative model to learn
very sparse and skewed distributions. Hence we transform
the data using a special function, in a slightly different way
than (Rodriguez et al. 2018).

In order to preserve the sensitivity of the smaller values, a
logarithm-based transformation function is a good candi-
date. Nevertheless, to maintain the sensitivity to the large
values, we should favor a linear function. In our attempt to
coincide the best of the two regimes, we design a function
that is logarithmic for lower values and linear for large one,
i.e after a specified cutoff value. The exact forward trans-
formation function, y = f(x, ¢, s) is defined as:

fx,¢,8) =f(x+s,¢)—f'(s,¢), (3)
where

_ | 3log,(x+1) ifx <g,

f'(x,¢) (4)

- 3(log,(c+1) +Z ~1) otherwise.

As a result, the backward transformation function x =
b(y,c,s) reads

b(y,c,s) =b'(y +f'(s,¢),c) =, (5)
where
El .
By,c) = e3s -1 ify <3log,(c+1),

c(3 +1-log,(c+1)) otherwise.

(6)
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Here ¢ and s are selected hyper-parameters. For our ex-
periments we found ¢ = 20,000 and s = 3 to be good can-
didates. After the forward transformation, the distribution
of the data becomes similar to a one-sided Laplacian dis-
tribution. We always invert this transformation once new
data is generated, before calculating the summary statis-
tics.

Appendix 2: N-Body training set augmentation

As N-body simulations are very expensive, we need to
make sure to use all the information available using an op-
timal dataset augmentation. To augment the training set,
the cubes are randomly rotated by multiples of 90 degrees
and randomly translated along one of the 3 axes. The cos-
mological principle states that the spatial distribution of
matter in the universe is homogeneous and isotropic when
viewed on a large enough scale. As a consequence there
should be no observable irregularities in the large scale
structure over the course of evolution of the matter field
that was initially laid down by the Big Bang (Dodelson
2003). Hence, the rotational and translational augmenta-
tions do not alter the data distribution that we are trying
to model in any way. Moreover, we note that use circular
translation in our augmentation scheme. This is possible
because N-body simulations are created using the periodic
boundary condition: a particle exiting the box on one side
enters it immediately on the opposite side. Forces follow
the same principle. This prevents the particles from col-
lapsing to the middle of the box under gravity. These aug-
mentations are important given that we only have 30 N-
body cubes in our training set.

Appendix 3: Architecture & implementation

details

Implementation details "We used Python and Tensorflow
to code the models which are trained on GPUs with 16 GB
of memory. All the GANs are WGANs with a Gaussian
prior distribution. Using a single GPU, it takes around 7
seconds to produce one sample of size 256° compared to
approximately 30 hours for a precise N-body simulator
running on two nodes with 24 cores and a GPU, such as
PKDGRAV3 (Potter et al. 2017). In this project, a fast and
approximate L-PicorA (Howlett et al. 2015) simulator was
used, with approximately 6 hours of runtime on two nodes.

The batch size is set to 8 for all the experiments. All
Wasserstein GANs were trained with using a gradient
penalty loss with ygp = 10, as described in Gulrajani et al.
(2017). We use RMSprop with a learning rate 3 - 10~ for
both the generator and discriminator. The discriminator
was updated 5 times per generator update.



Perraudin et al. Computational Astrophysics and Cosmology

Table 2 Detailled architecture of the low resolution GAN

0—323.d=64
Operation Parameter size Output Shape
Generator
Input zA(0,1) (n,256)
Dense (256,256d) (n, 256d)
Reshape (n,4,4,4,4d)
TrConv 3D (Sride 2) (4,4,4,4d,4d) (n, 8 8 8,4d)
[Relu (@ =02) (n,16,16,16,4d)
TrConv 3D (Sride 2) (4,4,4,4d,2d) (n, 6 16,16, 2d)
LReLu (@ =0.2) (n,16,16,16,2d)
TrConv 3D (Sride 2) (4,4,4,d,d) (n, 32 32,32,d)
LRelu (@ =0.2) (n,32,32,32,2d)
TrConv 3D (Sride 1) (4,4,4,d,d) (n,32,32,32,d)
LRelu (@ =0.2) (n,32,32,32,2d)
TrConv 3D (Sride 1) (4,4,4,d,1) (n,32,32,32,1)
Discriminator
Input generated image (n,32,32,32,1)
Conv 3D (Sride 2) 4,4,4.1,d) (n,32,32,32,d)
LRelu (@ =02) (n,32,32,32,d)
Conv 3D (Sride 2) 4,4,4,d,d) (n,32,32,32,d)
LRelu (@ =02) (n,32,32,32,d)
Conv 3D (Sride 1) (4,4,4,d,2d) (n,16,16,16,2d)
LRelu (@ =0.2) (n,16,16,16,2d)
Conv 3D (Sride 1) (4,4,4,2d,4d) (n,8,8,8,4d)
LRelu (@ =0.2) (n,8,8,8,4d)
Conv 3D (Sride 1) (4,4,4,4d,8d) (n,4,4,4,8d)
LRelu (@ =02) (n,4,4,4,8d)
Reshape (n,512d)
Dense (512d,1) (n, 1)

Network architectures

The neural networks used in our

experiments are variants of deep convolutional networks
with inception modules and/or residual connections.

All weights were initialized using Xavier Initializer, ex-
cept the bias that was initialized to 0. We used leaky ReLu
and spectral normalization (Miyato et al. 2018) to stabilize
the network. The architectures are detailed in Tables 2, 3
and 4.

Handling the input border is an architectural challenge
in itself. We used two different solutions to overcome this
issue and use one of them for each scale.

Generator M, The generator M, possesses a convolu-
tional encoder for the borders. Once the borders are en-
coded, we concatenate them with the latent variable. The
downsampled image simply concatenated at the first con-
volution layer (see Table 3).

Generator M, The generator M; does not possess an en-
coder, but utilize the border directly as extra channels. As
a result, the generator convolution all have a stride of 1.
The downsampled image is first upsampled using a simple
transposed convolution with a constant kernel and then
concatenated as an input. The latent variable is of size 323
to avoid a memory consuming linear layer. Eventually, as
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Table 3 Detailled architecture of UpscaleGAN 323 — 643.d =32

Operation Parameter size Output shape
Generator
Input borders (n,32,32,32,7)
Conv 3D (Sride 2) (4,4,4,7,d) (n,16,16,16,d)
Conv 3D (Sride 2) (4,4,4,d,d) (n,8,8,8,d)
Conv 3D (Sride 2) (4,4,4,d,16) (n,4,4,4,16)
Reshape (n,1024)
Input z; (0, 1) (n,1024)
Concatenation (n,2048)
Dense (2048, 2564) (n, 256d)
Reshape (n,16,16,16,2)
Input downsampled corner (n,16,16,16,1)
Input 2N (0,1) (n,16,16,16,1)
Concatention (n,16,16,16,4)
TrConv 3D (Sride 1) (4,4,4,4,d) (n,16,16,16,d)
LRelu (¢ =0.2) (n,16,16,16,4d)
TrConv 3D (Sride 1) (4,4,4,d,d) (n,16,16,16,d)
LRelu (¢ =0.2) (n,16,16,16,2d)
TrConv 3D (Sride 2) (4,4,4,d,4d) (n,32,32,32,4d)
LRelu (¢ =0.2) (n,32,32,32,4d)
TrConv 3D (Sride 1) (4,4,4,4d,24d) (n,32,32,32,24d)
LRelu (¢ =0.2) (n,32,32,32,d)
TrConv 3D (Sride 1) (4,4,4,2d,1) (n,32,32,32,1)
Discriminator
Input generated image (n,32,32,32,1)
Input borders (n,32,32,32,7)
Reshape to a cube (n,64,64,64,1)
Input smooth image (n,64,64,64,1)
Concatenation (+ diff) (n,64,64,64,3)
Conv 3D (Sride 1) (4,4,4,3,d) (n,64,64,64,d)
LRelu (¢ =0.2) (n,64,64,64,d)
Conv 3D (Sride 2) (4,4,4,d,2d) (n,32,32,32,2d)
LRelu (¢ =0.2) (n,32,32,32,d)
Conv 3D (Sride 2) (4,4,4,2d,4d) (n,16,16,16,4d)
LRelu (& =0.2) (n,16,16,16,d)
Conv 3D (Sride 1) (4,4,4,d,d) (n,16,16,16,d)
LRelu (& =0.2) (n,16,16,16,d)
Conv 3D (Sride 2) (4,4,4,d,d) (n,8,8,8,d)
LRelu (¢ =0.2) (n,8,8,8,d)
Reshape (n,512d)
Dense (512d,1) (n, 1)

the convolution is shift-invariant, we perform two trans-
formations to the input borders before feeding them to the
generator. As a results, we flip them to obtain a correct
alignment with produced corner. Furthermore, to improve
the capacity of the networks without increasing to much
the number of parameters and channels, we use an incep-
tion inspired module. The module is simply composed of
3 convolutions (1 x 1 x 1,2 x 2 x 2,4 x 4 x 4) in paral-
lel followed by a merging 1 x 1 x 1 convolution. Finally,
to further help the discriminator, we also feed some PSD
estimation at the beginning of its linear layer (see Table 4).

Training stabilization using a regularizer While it has
been shown that the gradient penalty loss of the Wasser-
stein GAN helps in stabilizing the training process (Gulra-
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Table 4 Detailed architecture of UpscaleGAN 643 — 2563,
d = 64. The parameter shape of the inception convolution written
InConv is too large be written in the table

Operation Parameter size Output shape
Generator
Input zA(0,1) - (n,32,32,32,1)
Input smooth image - (n,32,32,32,1)
Input borders - (n,32,32,32,7)
Concatention - (n,32,32,32,9)
InConv 3D (Sride 1) * (n,32,32,32,d)
LRelu (@ =0.2) (n,32,32,32,d)
InConv 3D (Sride 1) * (n,32,32,32,d)
LRelu (@ =0.2) (n,32,32,32,d)
InConv 3D (Sride 1) * (n,32,32,32,d)
LRelu (@ =0.2) (n,32,32,32,d)
InConv 3D (Sride 1) * (n,32,32,32,d)
LRelu (@ =0.2) (n,32,32,32,d)
InConv 3D (Sride 1) * (n,32,32,32,d)
LRelLu (@ =0.2) (n,32,32,32,d)
InConv 3D (Sride 1) * (n,32,32,32,d)
LRelu (@ =0.2) (n,32,32,32,d)
InConv 3D (Sride 1) * (n,32,32,32,d)
LRelLu (@ =0.2) (n,32,32,32,d)
InConv 3D (Sride 1) * (n,32,32,32,1)
Relu - (n,32,32,32,1)

Discriminator

Input generated image - (n,32,32,32,1)
Input borders - (n,32,32,32,7)
Reshape to a cube - (n,64,64,64,1)
Input smooth image (n,64,64,64,1)
Concatenation (+ diff) (n,64,64,64,3)
InConv 3D (Sride 2) * (n,32,32,32,2d)
LRelLu (@ =0.2) (n,32,32,32,2d)
InConv 3D (Sride 1) * (n,32,32,32,2d)
LRelLu (@ =0.2) (n,32,32,32,2d)
InConv 3D (Sride 1) * (n,32,32,32,d)
LRelLu (@ =0.2) (n,32,32,32,d)
InConv 3D (Sride 1) * (n,32,32,32,d)
[Relu (@ =0.2) (n,32,32,32,d)
InConv 3D (Sride 1) * (n,32,32,32,d)
[Relu (@ =0.2) (n,32,32,32,d)
InConv 3D (Sride 1) * (n,32,32,32,d)
LRelu (@ =0.2) (n,32,32,32,d)
InConv 3D (Sride 2) * (n, 6 16,16,d)
LRelu (@ =0.2) (n,16,16,16,d)
InConv 3D (Sride 2) * (n, 8 8 8,d)
LRelu (@ =0.2) (n,8,8,8,d)
Reshape - (n,16384)
Compute PSD - (n,1914)
Concatenate - (n,18298)
Dense (18,298,64) (n,64)

LReLu (@ =0.2) (n,64)

Dense 6416) (n,16)

LRelu (@ =0.2) (n,16)

Dense (16,1) (n,1)

(2019) 6:5

jani et al. 2017), this term does not prevent the discrimi-
nator to saturate. For example, when the discriminator has
a high final bias, its output will be very large for both real
and fake sample, yet its loss might be controlled as the out-
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put of real samples is subtracted from the one of the fake
samples. In practice, we noticed that when this behavior
was happening, the learning process of the generator was
hindered and the produced samples were of worse qual-
ity. In order to circumvent this issue, we added a second
regularization term:

ReLu(Dreal - Dfake)- (7)

Our idea was that the regularization should kick in only to
prevent the un-desirable effect and should not affect the
rest of the training. If the discriminator is doing a good job,
then Dy, should be positive and D,y negative nullifying
the regularization. On the contrary if both of these term
are of the same sign, the output will be penalized quadrat-
ically forcing it to remain close to 0. While the effect of this
second regularization term is still unclear to us, it did help
to stabilize our optimization procedure for the multi-scale
approach.

As we release our code and entire pipeline, we encourage
the reader to check it for additional details.
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