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Abstract
In the late stages of terrestrial planet formation, pairwise collisions between planetary-sized bodies act as the
fundamental agent of planet growth. These collisions can lead to either growth or disruption of the bodies involved
and are largely responsible for shaping the final characteristics of the planets. Despite their critical role in planet
formation, an accurate treatment of collisions has yet to be realized. While semi-analytic methods have been
proposed, they remain limited to a narrow set of post-impact properties and have only achieved relatively low
accuracies. However, the rise of machine learning and access to increased computing power have enabled novel
data-driven approaches. In this work, we show that data-driven emulation techniques are capable of classifying and
predicting the outcome of collisions with high accuracy and are generalizable to any quantifiable post-impact
quantity. In particular, we focus on the dataset requirements, training pipeline, and classification and regression
performance for four distinct data-driven techniques from machine learning (ensemble methods and neural
networks) and uncertainty quantification (Gaussian processes and polynomial chaos expansion). We compare these
methods to existing analytic and semi-analytic methods. Such data-driven emulators are poised to replace the
methods currently used in N-body simulations, while avoiding the cost of direct simulation. This work is based on a
new set of 14,856 SPH simulations of pairwise collisions between rotating, differentiated bodies at all possible
mutual orientations.
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1 Introduction
Pairwise collisions between planetary-size bodies are the
primary agent of planet growth during the late stages
of planet formation. These collisions—often called “giant
impacts”—are violent events that result in either growth or
disruption of the colliding bodies (Leinhardt and Stewart
2012; Stewart and Leinhardt 2012). Collisions shape nearly
every aspect of a planet’s final characteristics, including its
composition, thermal budget, rotation rate, and obliquity.
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Collisions can also determine whether a planet will retain
an atmosphere, form satellites, or ultimately be hospitable
to life. In addition to their role in planet formation, giant
impacts have been suggested as explanations for a number
of persisting mysteries in our own solar system, includ-
ing the origin of Earth’s Moon (Benz et al. 1986; Canup
and Asphaug 2001), Mercury’s large core (Benz et al. 1988;
Chau et al. 2018), Uranus’ sideways tilt (Kegerreis et al.
2018), the martian hemispheric dichotomy (Wilhelms and
Squyres 1984), the ice giant dichotomy (Reinhardt et al.
2019), Jupiter’s fuzzy core (Liu et al. 2019), and the Pluto-
Charon system (Canup and Asphaug 2003).

Collisions play a central role in N-body studies of planet
formation. Since the first N-body simulations were per-
formed in the 1960s (von Hoerner 1960), the underlying
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numerical schemes have improved in leaps and bounds.
Collisional N-body codes now routinely include 103 mas-
sive particles,a as well as general relativistic effects, gas dy-
namics (Morishima et al. 2010; Walsh et al. 2011), and the
effect of external perturbations (Hands et al. 2019). How-
ever, despite these advances, the methodology for han-
dling collisions between bodies has remained frustratingly
primitive. Within N-body codes, a range of techniques for
handling collisions can be employed. In the simplest, phys-
ically self-consistent case, collisions can be treated as per-
fectly inelastic mergers (PIM), whereby mass and momen-
tum are conserved, but no fragmentation is possible. While
efficient and easy to implement, the downside of PIM is
that the outcomes are unphysical for all but a narrow sub-
set of low-energy collisions. Despite its shortcomings, this
is the technique that has been employed in the vast major-
ity of N-body simulations to date.

At the other end of the spectrum, an ideal approach
would be to simulate every collision using an accurate,
high-resolution hydrodynamics code. This has recently
been achieved in the context of volatile transfer (Burger
et al. 2019). Unfortunately, such a hybrid approach is com-
putationally prohibitive and adds significant complexity to
the simulation. Moreover, because collisions must be eval-
uated sequentially in order to preserve self-consistency,
the N-body integrator must remain idle while each col-
lision is evaluated. This substantially increases the time
required to complete a single N-body simulation. The
problem is further compounded by the fact that, dur-
ing a typical simulation of late-stage planet formation,
the number of collisions can easily reach tens of thou-
sands. This is a problem that will only grow more in-
tractable as N-body codes improve and computing power
increases, enabling ever larger numbers of bodies—and
thus collisions—within N-body simulations.

In between these two extremes, a number of semi-
analytic models have been developed in an effort to im-
prove how collisions are handled within N-body simula-
tions while keeping the computational overhead tractable.
These semi-analytic models are derived from collision
simulation datasets of varying size and complexity (Lein-
hardt and Richardson 2005; Leinhardt and Stewart 2012;
Genda et al. 2017). One modern semi-analytic approach
is the model known as EDACM (Leinhardt and Stewart
2012), which is a set of analytic relations derived from
simulations of pairwise collisions between non-rotating
gravitational aggregates (i.e., rubble piles) (Leinhardt and
Richardson 2005). Whereas PIM is only able to pre-
dict limited properties of the largest (and only) remnant,
EDACM allows for fragmentation (outcomes with more
than one remnant) and is therefore able to predict lim-
ited properties of a second post-impact remnant and de-
bris. Since its inception, EDACM has been implemented
into the N-body codes Mercury (Chambers 1999, 2013)

and pkdgrav (Stadel 2001; Bonsor et al. 2015) and used
in several notable studies of terrestrial planet formation
(Carter et al. 2015; Quintana et al. 2016). A simpler, but
more recent semi-analytic approach is the impact-erosion
model (IEM) for gravity-dominated planetesimals (Genda
et al. 2017). IEM predicts the normalized debris mass and,
from this value, implicitly predicts the mass of a single
remnant. These models are a marked improvement, but
the downside of such semi-analytic methods is that they
are difficult to generalize beyond a narrow set of parame-
ters and have in practice been able to achieve only modest
accuracies, in some cases performing worse than PIM (see
Table 6).

In recent years, the rise of machine learning and access
to increasing computing power have enabled new data-
driven approaches. Now, with sufficiently large datasets,
surrogate models known as emulators can be trained to
predict the outcome of collisions “on-the-fly” (i.e., within
N-body simulations) (Cambioni et al. 2019). These em-
ulators are lightweight enough to be integrated directly
into existing N-body codes (Emsenhuber et al. 2020) and,
once trained, can make near-instantaneous predictions of
collision outcomes. In this paper, we show that they can
far outperform existing analytic and semi-analytic meth-
ods. Nascent efforts to emulate collision outcomes have
explored artificial neural networks (ANN) (Cambioni et al.
2019; Valencia et al. 2019). These studies have shown that
simple ANNs can achieve high accuracy on relatively small
datasets (N = 800).

Machine learning techniques generally rely on the avail-
ability of large and well-sampled training datasets. Until
recently, simulating such large collision datasets was com-
putationally infeasible. However, computational fluid dy-
namics (CFD) algorithms and computing resources have
advanced to the point where these datasets are now realiz-
able. At the same time, recent improvements in CFD have
opened the door to new dimensions in the collision param-
eter space. Collisions can now be simulated between differ-
entiated bodies, rotating bodies, and bodies with arbitrary
mutual orientations. In order to effectively sample these
additional dimensions, even larger datasets are needed.

In this work we introduce a new dataset of 14,856 simu-
lations of pairwise collisions between differentiated, rotat-
ing bodies. This dataset is larger than any previous dataset
and includes effects not accounted for in similar studies,
including the effects of pre-impact rotation and variable
core mass fractions. These simulations were evaluated for
an unprecedented number of post-impact parameters; in
this work we investigate a subset of those parameters that
are relevant to N-body studies of terrestrial planet forma-
tion.

In order to determine which numerical strategies are
best suited to emulating collisions, we developed a flex-
ible and robust machine-learning pipeline to train, op-
timize, and validate classification and regression models
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from different data-driven methodologies, including tech-
niques from the field of uncertainty quantification (UQ)
and machine learning (ML). In addition, the techniques
were tested on a range of training dataset sizes, in order
to provide constraints on dataset requirements for future
studies.

The need to improve collision handling in N-body stud-
ies has often been dismissed in the literature, motivated by
studies which have shown that the final number, masses,
and orbital elements are barely affected by the collision
method (Kokubo and Genda 2010). However, a number of
more recent studies with improved collision models have
overturned those conclusions. Indeed, studies with accu-
rate collision handling have obtained profoundly different
planetary system architectures, with a wider range of plan-
etary masses and enhanced compositional diversity (Em-
senhuber et al. 2020). Moreover, N-body simulations al-
lowing for fragmentation have shown that roughly half
of collisions occurring during planet formation are dis-
ruptive (Kokubo and Genda 2010) and, even within the
non-disruptive regime, the effect of erosive collisions on
planet growth has likely been underestimated or neglected
(Inaba et al. 2003; Kobayashi and Tanaka 2010). Studies
have also shown that the growth timescale of planets de-
pends strongly on the collision model, in some cases in-
creasing the growth timescale of the planets by a factor
of two (Quintana et al. 2016). This has massive implica-
tions for the internal and atmospheric evolution of planets
(Hamano and Abe 2010), their subsequent habitability, the
formation of satellites (Elser et al. 2011), and even the like-
lihood of detecting giant impacts around other stars (Bon-
ati et al. 2019).

We begin in Sect. 2 by describing the collision datasets
that we generated and how each collision was set up, sim-
ulated, and analyzed. In Sect. 3, we give an overview of the
emulation strategies used in this work and how they were
evaluated. In Sect. 4 we report on the performance of the
classification and regression models, their dependence on
dataset size, and the associated sensitivity metrics. Finally,
in Sect. 5, we discuss which techniques are best suited to
emulating planetary-scale collisions, their relative ease (or
complexity) of implementation, and where future work re-
mains to be done.

2 Dataset
2.1 Methods
In order to train, test, and compare emulation strategies, a
large number of collision simulations was required. In to-
tal, we simulated 14,856 collisions for this work. From the
shuffled dataset, we reserved 20% (N = 2972) as a hold-
out dataset for testing both the analytic and data-driven
models. The remaining 80% (N = 11,884) were used as a
training dataset for the data-driven models. We addition-
ally used a subset of 200 collisions (12D_LHS200) to study
the convergence of the post-impact parameters.

The full dataset (all) is comprised of six individual
datasets (Table 2), which are introduced in Sect. 2.1.2. Ev-
ery collision in these datasets is uniquely defined by 12 pre-
impact parameters (Sect. 2.1.1). The large number of di-
mensions in the parameter space necessitated an efficient
sampling strategy, for which we employed Latin hypercube
sampling (LHS) and the adaptive response surface method
(ARSM) (Sect. 2.1.2).

23,768 unique planet models had to be generated to
serve as either a target or projectile in the collisions
(Sect. 2.1.3). These models were spun-up to their pre-
impact rotation rates using a novel approach that we
developed for this work (Sect. 2.1.4). Collisions were
simulated using smoothed-particle hydrodynamics (SPH)
(Sect. 2.1.5) and were subsequently evaluated for more
than a hundred post-impact parameters (Sect. 2.1.6).
These post-impact parameters were tested for conver-
gence (Sect. 2.1.7) and a subset of these parameters was
chosen to be investigated in this work on account of their
relevance to N-body studies of terrestrial planet formation
(Table 3).

2.1.1 Pre-impact conditions
Each collision is uniquely defined by 12 pre-impact param-
eters (Table 1). Together, these parameters define the ge-
ometry of the impact and the physical and rotational char-
acteristics of the bodies involved in the collision. This set
of parameters allows us to investigate the role of collisions
in terrestrial planet formation, critically including the role
of core mass fraction, rotation, and mutual orientation.
The ranges of these parameters were chosen with two con-
straints in mind. First, the datasets should be focused on

Table 1 Pre-impact parameters. Each collision in the dataset is
uniquely defined by a set of 12 parameters. These parameters
define the geometry of the collision and the physical
characteristics, rotations, and orientations of the bodies involved
in the collision. The subscripts ∞, targ, and proj refer to the
asymptotic, target, and projectile values, respectively. The unit
Rgrav corresponds to maximum asymtotic impact parameter that
will result in a collision

Parameter Range Unit Description

Mtot 0.1–2 M⊕ Total mass (Mtarg +Mproj)
γ 0.1–1 – Mass ratio (Mproj ÷Mtarg)
b∞ 0–1 Rgrav Asymptotic impact parameter
v∞ 0.1–10 vesc Asymptotic impact velocity

Fcore
targ 0.1–0.9 – Target core mass fraction

�targ 0–0.9 �crit Target rotation rate
θtarg 0–180 deg Target obliquity
φtarg 0–360 deg Target azimuth

Fcore
proj 0.1–0.9 – Projectile core mass fraction

�proj 0–0.9 �crit Projectile rotation rate
θproj 0–180 deg Projectile obliquity
φproj 0–360 deg Projectile azimuth
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terrestrial planet formation. Second, and foremost for this
work, the datasets should allow for a fair and robust com-
parison between distinct emulation strategies.

In order to satisfy the first constraint, we simulated colli-
sions with total masses (Mtot) between 0.1–2 Earth masses,
which is of interest to late-stage terrestrial planet forma-
tion. The ratio of projectile mass to target mass (γ ) was
allowed to range from 0.1 up to equal-mass collisions (γ =
1). The resulting models range in mass from roughly a lu-
nar mass up to nearly twice that of Earth.

The bodies involved in the collisions—referred to in this
work as the target and projectile—are fully differentiated
planets composed of an iron core and granite mantle. The
mass fraction of the core relative to the body’s total mass
is defined by Fcore

body, where the body subscript can refer to
the target, projectile, largest post-impact remnant (LR), or
second largest post-impact remnant (SLR). The core mass
fractions of the target and projectile range from 0.1–0.9
(i.e., iron cores ranging from 10–90% by mass).

The target and projectile in the collisions are allowed to
rotate. The rotation rates range from non-rotating to ro-
tation at 90% the estimated breakup rate (�crit). The esti-
mated breakup rate is calculated according to Maclaurin’s
formula for a self-gravitating fluid body of uniform density,

�2
crit

πGρ
= 0.449331, (1)

where G is the gravitational constant and ρ is the bulk den-
sity of the body (Chandrasekhar 1969). Here, we calculate
the bulk density of the body by using the mass and radius
of the non-rotating model. Because the Maclaurin formula
assumes a uniform density, the estimated breakup rate is
more accurate for lower mass bodies and bodies with small
core mass fractions. For high-mass bodies and those bod-
ies with large core mass fractions, where the density profile
strongly deviates from uniformity, the estimated breakup
rate will be a lower bound. While the Maclaurin formula
is a somewhat blunt approximation, it serves as a good es-
timate of the permissible rotation rates and therefore pro-
vides an upper limit for rotation rates in the pre-impact
parameter space. We set the maximum rotation at 90% of
the critical rate in order to avoid borderline unstable cases
at lower masses. While it would be better to use empirically
derived breakup rates for each model, such a study would
require significant computational resources that were be-
yond the scope of this work.

The orientations of the target and projectile are uniquely
defined by the obliquity (θ ) and azimuth (φ) of their angu-
lar momentum vectors (i.e., rotation axes). These angles
are allowed to vary between 0–180◦ and 0–360◦, respec-
tively, where the obliquity is measured relative to the unit
vector normal to the collision plane (ẑ) and the azimuth

relative to a pre-defined reference direction (ŷ) in the col-
lision plane. This allows for every possible mutual orienta-
tion between the target and projectile prior to impact.

In defining the pre-impact geometry of the collision, we
depart from previous work by specifying the asymptotic
impact parameter (b∞) and asymptotic relative velocity
(v∞). In contrast, previous studies have generally used the
associated quantities at the moment of impact (bimp and
vimp, respectively). However, this latter parameterization
can result in unphysical initial conditions. Indeed, prior to
impact, the mutual gravitational interaction between the
target and projectile can alter their shapes, rotation rates,
and relative orientations. This also alters the pre-impact
trajectory and subsequent collision. This is due to the fact
that both the target and projectile act as reservoirs of en-
ergy, whereby some fraction of the orbital energy in the
pre-impact trajectory is transferred into the tidal deforma-
tion and rotational energy of the bodies. The simulations
in this work therefore begin with the target and projec-
tile separated by 10 critical radii, where the critical radius
is given by Rcrit = Rtarg + Rproj. Note that we use the non-
rotating radii of the target and projectile in calculating the
critical radius. This parameterization avoids the degener-
acy introduced by arbitrary mutual orientations of rotat-
ing bodies. Indeed, rapidly rotating bodies can take on sig-
nificantly oblate shapes, increasing their radii and making
a clear definition of the critical radius problematic when
the orientations are taken into account. With respect to
the data-driven models, this parameterization is ideal be-
cause it does not introduce any additional colinearity into
the pre-impact parameter space. A parameterization of b∞
that takes into account the orientations (θ and φ) and rota-
tion rates (�) would introduce significant colinearity and
was therefore avoided.

The parameter space investigated in this work is larger
than any extant collision dataset known to the authors at
the time of writing. Nonetheless, the parameter space is
limited by computational resources and sampling require-
ments. It therefore does not yet include the full range of
collisions relevant to planet formation, but does serve as a
good training, test, and validation space for the emulators
in this work. The emulation strategy developed in the work
that follows easily allows for the parameter space to be ex-
panded as computational resources become available.

2.1.2 Sampling strategy
In order to make a robust comparison between different
emulation strategies, the underlying datasets must be well-
sampled and well-behaved. However, generating a well-
sampled training dataset in a high-dimensional parameter
space is not a trivial task. The large number of dimensions
quickly renders many approaches computationally infeasi-
ble. Indeed, a uniform grid sample would require nd simu-
lations, where d is the number of dimensions and n is the
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desired number of samples in each dimension. A low res-
olution 12-dimensional dataset with 10 samples in each
dimension would then require 1012 simulations, which is
roughly eight orders of magnitude beyond current practi-
cal computational limits.

In order to overcome this problem while maintaining
flexibility in the dataset requirements, we used a Latin hy-
percube sample (LHS) based version of the adaptive re-
sponse surface method (LHS-ARSM) in order to sample
a series of LHS (Wang 2003). Latin hypercube sampling
is a statistical method for generating a near-random sam-
ple of parameter values from a d-dimensional distribution
(McKay et al. 1979). LHS works on a function of d param-
eters by dividing each parameter into n equally probable
intervals. The samples generated in this fashion are then
distributed such that there is only one sample in each axis-
aligned hyperplane. The advantage of this scheme is that it
does not require additional samples for additional dimen-
sions. LHS techniques have been used to considerable suc-
cess in other high-dimensional astrophysical applications
(Knabenhans et al. 2019).

In this study, the training dataset sizes required to reach
optimal accuracies were not known a priori. Therefore,
a procedure was needed to expand an existing dataset
while maintaining certain properties, such as Latin hy-
percube, space-filling, and stratification properties. LHS-
ARSM achieves this by sequentially generating sample
points while preserving these distributional properties as
the sample size grows. Unlike LHS, LHS-ARSM generates
a series of smaller subsets that exhibit the following prop-
erties: the first subset is a Latin hypercube, the progressive
union of subsets remains a LHS (and achieves maximum
stratification in any one-dimensional projection), and the
entire sample set at any time is a Latin hypercube. Bench-
marking tests show that LHS-ARSM leads to improved
efficiency of sampling-based analyses over older versions
of ARSM (Wang 2003).

For the 12D_LHS10K dataset, we generated an initial
LHS of 1000 collisions using the standard maximin dis-
tance criterion in order to guarantee space-filling proper-
ties. We then used LHS-ARSM to progressively enrich the
sample in steps of 1000 collisions until we reached a total
sample size of 10,000. We separately generated a 12D LHS
sample of 500 collisions, designated 12D_LHS500, and a
12D LHS of 200 collisions designated 12D_LHS200. We
subsequently used the 12D_LHS200 dataset to study the
temporal convergence of the post-impact parameters, as
a convergence study on the larger datasets was computa-
tionally infeasible.

In addition to the 12D datasets introduced above, we
simulated two datasets of 500 collisions each, but with
fewer dimensions. In the 6D_LHS500 and 4D_LHS500
datasets, the target and projectile are non-rotating, there-
fore fixing the rotational input parameters (�, θ , and φ for

each body). In the4D_LHS500dataset, the core mass frac-
tions of the target and projectile (Fcore

targ and Fcore
proj , respec-

tively) are additionally held constant at 0.33.
The 12D_LHS10K, 12D_LHS500, and 12D_LHS200,

as well as the6D_LHS500 and4D_LHS500 datasets share
the same parameter ranges (for those parameters that are
varied) and therefore represent a composite sample in a
shared parameter space. Superimposing LHS of the same
dimension has the effect of increasing the resolution of
the sample uniformly. However, superimposing LHS of dif-
ferent dimensions increases the resolution along specific
hyperplanes of the higher dimension sample. Indeed, the
resolution of the training dataset increases for values of
the paramaters that are not varied in the lower dimension
LHS (e.g., for core mass fractions of 0.33 in the case of
4D_LHS500).

While this causes the training dataset to deviate from
truly uniform sampling, we found that the additional sim-
ulations provided a net improvement to the performance
of our models. Moreover, the additional simulations pro-
vide increased resolution in the regions of the parameter
space in which collisions are most likely to occur, which is
a desirable feature in a training dataset. The choice to in-
clude the lower dimension LHS was therefore justified and
tends to improve the performance of the models in the re-
gions of the parameter space which are critical for planet
formation.

In training the data-driven models in this work, it be-
came clear that a large number of additional simulations
were required at lower velocities. These additional colli-
sions are necessary to sample both sides of the boundary
between merging and hit-and-run collisions, which rep-
resents a relatively sharp discontinuity in the parameter
space. We therefore simulated an additional 3384 simu-
lations with asymptotic relative velocities between 0.1–
1 vesc. The number of simulations in this region was chosen
to match the resolution in the parameter space at higher
velocities.

The relatively large number of simulations at lower ve-
locities is due to the increased gravitational focusing ra-
dius, which grows rapidly at these velocities. Because we
sample the asymptotic impact parameter (b∞) in units of
critical radii (Rcrit), more simulations are required at low
velocities in order to maintain the desired resolution. As
with the superimposed samples at higher velocities, the re-
sulting increase in resolution at lower velocities is desirable
because this is the region of the parameter space where
collisions are most likely to occur. Moreover, it has the in-
tended benefit of increasing the resolution of the training
dataset around the transition region between merging and
hit-and-run, which is a difficult transition to capture.

The datasets used in this work are summarized in Table 2
and were combined to create a composite training dataset.
This dataset was used to train and test the data-driven clas-
sification and regression models in the work that follows.
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Table 2 Summary of the collision datasets in this work. Each
simulation requires two unique models to serve as the target and
projectile. In this work, we combined six distinct datasets to
create a dataset of 14,856 collisions. The 12D_LHS200 dataset
was additionally used to study the convergence of the
post-impact parameters, as a convergence study the larger
datasets was computationally infeasible. The 12D_LHSLOW
dataset was simulated to study low asymptotic relative velocities
from 0.1-1 vesc

Dataset Type Collisions Models v∞ (vesc)

12D_LHS10K ARSM 10,000 20,000 1–10
12D_LHS500 LHS 500 1000 1–10
12D_LHS200 LHS 200 400 1–10
12D_LHSLOW LHS 3384 6768 0.1–1
6D_LHS500 LHS 500 1000 1–10
4D_LHS500 LHS 500 1000 1–10

all Composite 14,856 29,712 0.1–10
train Composite 11,884 23,768 0.1–10
test Composite 2972 5944 0.1–10

2.1.3 Generating planet models
The collisions in this work are pairwise collisions between
a target and projectile, where the target is the more massive
of the two bodies. In order to simulate collisions between
these bodies using a particle-based method such as SPH,
we had to first create suitable particle representations (i.e.,
models) of each body. We used ballic (Reinhardt and
Stadel 2017) to generate non-rotating, low-noise particle
representations of each body. The ballic code solves the
equilibrium internal structure equations using the Tillot-
son equation of state (EOS) and can generate models with
distinct compositional layers. In this work we investigated
fully differentiated two-layer bodies with iron cores and
granite mantles.

2.1.4 Pre-impact rotation
In order to facilitate collisions between rotating planets,
we developed a method to induce rotation in the non-
rotating models generated by ballic. The planets were
first generated as non-rotating spherical models, after
which a linearly increasing centrifugal force was applied
to the particles in the rotating frame. The maximum cen-
trifugal force applied to each particle is that which is re-
quired to achieve the desired rotation rate, Fc = mprxy�

2,
where mp is the particle mass and rxy is the particle’s dis-
tance from the rotational axis. Once the maximum cen-
trifugal force has been reached, Fc is held constant and the
model is allowed to relax to a low-noise state. The parti-
cles are then transformed into the non-rotating frame and
allowed to relax again. This method can spin-up a body up
to its critical rotation rate (and beyond if not careful) and
therefore allows us to probe collisions between rotating
planets at any mutual orientation. An example of a model
before and after the spin-up procedure is shown in Fig. 1.

Figure 1 Cross-section of amodel. The top panel shows the
cross-section of a model in its non-rotating state as generated by
ballic. In the bottom panel, a cross-section of that same model is
shown in its rotating state after being spun-up by Gasoline. The
model shown in this figure is designated YRMmYF in the
12D_LHS200 dataset and has the following properties:
M = 1.192 M⊕ , Fcore

body = 0.122, � = 0.869 �crit , εbody = 0.486, and
εcore = 0.2966, where ε is the flattening. Note that the flattening of
the core is less than that of the entire body

This represents a significant improvement over previous
work, which has generally only considered collisions be-
tween non-rotating bodies.

2.1.5 Simulating collisions
The collisions in the datasets reported here have been sim-
ulated with Gasoline (Wadsley et al. 2004), a massively-
parallel SPH code. The version of Gasoline used in this
work has been modified specifically to handle planetary
collisions and has been used in previous work to study the
origin of the Moon, Mercury’s large core (Chau et al. 2018),
and the ice giant dichotomy (Reinhardt et al. 2019). These
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modifications are described in detail in previous papers
(Reinhardt and Stadel 2017; Reinhardt et al. 2019). Gaso-
line uses the Tillotson EOS (Tillotson 1962; Brundage
2013), which allows us to simulate collisions between dif-
ferentiated planets with iron cores and granite mantles.

The resolution of the collisions in this work ranges from
20,000 to 110,000 particles. The resolution of each col-
lision is set by the pre-impact mass ratio, whereby the
smaller body (the projectile) is required to have Nproj =
10,000 particles. The particle mass is constant and there-
fore the larger body (the target) has Ntarg = 10,000/γ parti-
cles. The minimum mass ratio that we consider is γ = 0.1
and therefore the maximum resolution is 110,000 parti-
cles.

The simulations used in this work were simulated at the
Swiss National Supercomputing Center (CSCS) and are
publicly available in the Dryad repository: https://doi.org/
10.5061/dryad.j6q573n94.

2.1.6 Post-impact analysis
In this work, we consider a wide range of pre-impact con-
ditions. This diversity of pre-impact conditions leads to a
diverse set of post-impact states. The post-impact states
for a subset of collisions in this work are shown in Fig. 2,
wherein the collisions are roughly ordered by their pre-
impact geometry. Collisions near the top left are high-
velocity head-on impacts, whereas collisions near the bot-
tom right are low-velocity grazing impacts. The range of
collision outcomes required a robust script to retrieve the
desired post-impact properties.

Every collision was evaluated for more than a hundred
post-impact properties. We focus on a subset of these
properties that are likely to prove important for N-body
studies of terrestrial planet formation. These properties
are listed in Table 3. In particular, we focus on the prop-
erties of the LR, SLR, and the debris field.

Collisions were simulated for a time equal to 100 times
the timescale of the collision (100τ ). The collision time-
scale τ is equivalent to the crossing time of the encounter
and is given by,

τ =
2Rcrit

vimp
, (2)

where vimp is the velocity at impact (see Appendix A) and
we reiterate that Rcrit depends on the non-rotating radii of
the colliding bodies.

In order to identify the post-impact LR, SLR, and debris
field we used the SKID group finder (Stadel 2001). SKID
identifies coherent, gravitationally bound clumps of mate-
rial. It does this by identifying regions which are bounded
by a critical surface in the density gradient (akin to iden-
tifying watershed regions). Then it removes the most un-
bound particles one-by-one from the resulting structure

until all particles are self-bound. In this work, the mini-
mum number of particles in a SKID clump was set to 10.
This usually produces a much larger number of clumps
than just the two that would correspond to the first and
second largest remnants. For this reason the analysis rou-
tine checks if these clumps are further bound to either of
the first or second largest clumps, if not, they are identified
as part of the debris field of the collision.

In addition, in order to qualify as a remnant, the two
largest SKID clumps are required to meet a minimum mass
requirement. The largest clump only qualifies as the LR
if its mass is greater than 10% of the target mass (MLR >
0.1 Mtarg). Similarly, the second largest clump only quali-
fies as the SLR if its mass is greater than 10% of the projec-
tile mass (MSLR > 0.1 Mproj). If one or both of the clumps
does not meet the relevant mass requirement, then it is
considered to be part of the debris.

A number of the post-impact properties investigated
here do not have obvious definitions and require some ex-
planation. We define or provide explanations for the post-
impact parameters in Appendix A. In addition, we inves-
tigate the normalized masses to determine whether or not
such normalization leads to improved regression perfor-
mance for the data-driven techniques.

2.1.7 Convergence of post-impact parameters
We evaluated the convergence of all post-impact proper-
ties considered in this work (Table 3) using the 12D_LHS
200 dataset.b Convergence was measured relative to the
post-impact quantity’s value at 100τ (the value used to
train the emulators). In order to quantify the convergence,
we calculated the absolute relative error E at uniformly
sampled intervals of τ ,

E(τ ) =
|y(τ ) – y100|

y100
, (3)

where y(τ ) is the value of the post-impact parameter at τ

and y100 is the value used in the training dataset. For a sin-
gle post-impact quantity, this yields 200 measurements of
E at each evaluated step of τ . The median of these relative
errors is plotted as a function of τ in Fig. 3.

Most post-impact parameters have converged to within
1% of their training value by 50τ , however the radii (R), ro-
tation rates (�), and debris angular momentum (Jdeb) are
still converging at 100τ . We note that the non-convergence
of the radii and rotation rates is the result of both numer-
ical considerations and ongoing physical processes post-
impact (e.g., differentiation, thermal equilibration, etc.).
The choice of EOS in the SPH simulations is thought to a
significant role in the convergence of the post-impact radii
and rotation rates, which are coupled. However, at the time
of writing the magnitude of this effect is not well under-
stood.

https://doi.org/10.5061/dryad.j6q573n94
https://doi.org/10.5061/dryad.j6q573n94
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Figure 2 Diversity of collision outcomes. The images above show the outcomes for a subset of the collisions in the 12D_LHS200 dataset. The images
are ordered by their impact geometry. From left to right, the impact parameter (b∞) increases from head-on (b∞ = 0) to grazing impacts (b∞ → 1).
From bottom to top, the relative asymptotic velocity increases (v∞). Thus, collisions near the top left are high-velocity, head-on impacts, whereas the
collisions near the lower right are low-velocity, grazing collisions. Head-on, high velocity impacts are catastrophically disruptive to both the target
and projectile, whereas grazing collisions tend to result in hit-and-run outcomes. At lower velocities, the target and projectile tend to merge and
form a single remnant. In all collisions, debris is generated. The spatial distribution of this debris is strongly dependent on the collision geometry.
Emulators must be able to accurately predict post-impact properties for a wide range of collision outcomes. The color scale indicates log-density

The debris field generally provides a much smaller reser-
voir for angular momentum than either the LR or SLR.
Therefore, ongoing exchange of angular momentum with
one or more massive remnants generally has a large ef-
fect on the debris angular momentum budget, while at
the same time having a negligible effect on the LR and

SLR angular momenta. These properties (i.e., the post-
impact radii and debris angular momentum) are there-
fore not suitable for training data-driven methods on ac-
count of their non-convergence. Future datasets based on
longer simulations are required to determine the con-
vergence timescale of these properties and may subse-
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Table 3 Post-impact parameters. In this work we consider the
following subset of post-impact parameters, focusing on the LR,
SLR, and debris field. These parameters were chosen for their
relevance to N-body studies of terrestrial planet formation.
Detailed definitions of the post-impact parameters and how they
are evaluated can be found in Appendix A

Parameter Constraints Unit Description

ξ –10–1 – Accretion efficiency

MLR 0–Mtot M⊕ Mass
Mnorm

LR 0–1 Mtot Normalized mass
RLR >0 R⊕ Radius
Fcore

LR 0–1 – Core mass fraction
�LR >0 Hz Rotation rate
θLR 0 – 180 deg Obliquity
JLR 0–Jtot J · s Angular momentum
Fmelt

LR 0–1 – Melt fraction
δmix

LR 0–0.5 – Mixing ratio

MSLR 0–Mtot M⊕ Mass
Mnorm

SLR 0–0.5 Mtot Normalized mass
RSLR >0 R⊕ Radius
Fcore

SLR 0–1 – Core mass fraction
�SLR >0 Hz Rotation rate
θSLR 0–180 deg Obliquity
JSLR 0–Jtot J · s Angular momentum
Fmelt

SLR 0–1 – Melt fraction
δmix

SLR 0–0.5 – Mixing ratio

Mdeb 0–Mtot M⊕ Mass
Mnorm

deb 0–1 Mtot Normalized mass
FFe

deb 0–1 – Iron mass fraction
Jdeb 0–Jtot J · s Angular momentum
δmix

deb 0–0.5 – Mixing ratio
θ̄deb –90–90 deg Mean altitude
θ stdev

deb >0 deg Stddev altitude
φ̄deb 0–360 deg Mean azimuth
φstdev

deb >0 deg Stddev azimuth

quently allow these parameters to be used in emulation
tasks.

In order to track the rotation of planets during N-body
simulations, a substitute for the rotation rate is therefore
needed. We investigated the convergence of the rotational
angular momenta of the remnants (JLR and JSLR) and found
that they converge quickly following the impact. Indeed,
following an impact, the angular momentum is quickly
partitioned between the surviving bodies and has largely
converged within a few tens of τ . While the debris angu-
lar momentum does not show the same convergence, it can
instead be calculated implicitly from the angular momenta
of the remnants and initial total angular momentum. We
therefore suggest that N-body studies should utilize the
angular momenta budget of the remnants to track rota-
tion, rather than the rotation rates themselves.

3 Emulation strategies
In order to overcome the limitations of analytic and semi-
analytic approaches, techniques from the field of ML have

Figure 3 Convergence of post-impact properties. Here we show the
convergence of the parameters in Table 3 for the 12D_LHS200
dataset. The median of the relative errors for each parameter are
shown for uniformly spaced intervals of τ . Note that the radii, rotation
rates, and angular momentum of the debris have not converged by
100τ . Future datasets may provide better convergence, however with
the current data they are not suitable for training data-driven models.
The remnant angular momenta converge quickly and are therefore
better suited for studying rotation

proved promising (Cambioni et al. 2019). Techniques from
UQ have also achieved considerable success in other areas
of astrophysics investigating high-dimensional emulation
(Knabenhans et al. 2019) (hereafter we refer to ML and UQ
as “data-driven” techniques). These techniques can pro-
vide accurate and efficient strategies for emulating colli-
sions. Data-driven methods have the major advantage of
being generalizable to any quantifiable post-impact prop-
erty, whereas analytic prescriptions are difficult to expand
beyond a narrow set of properties. In order to identify the
emulation methods best suited to the problem at hand, we
have evaluated and compared the ability of several distinct
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classification and regression techniques to accurately clas-
sify and predict the post-impact properties of planetary-
scale collisions.

To predict the outcome of a collision, an emulation
pipeline must first classify each collision into certain
regimes. These regimes can be as coarse or granular as de-
sired, but at very least the collisions must be distinguished
by their number of post-impact remnants. This is neces-
sary to determine which regression models are called in
the subsequent emulation step and ensures that regression
models are not asked to make out-of-sample predictions
(or at least minimizes such cases). Because we consider
a maximum of two post-impact remnants in this work—
designated the LR and SLR—our classifier must classify
collisions into the following classes: 0 (no remnants), 1
(one remnant; the LR), or 2 (two remnants; the LR and
SLR). In all collisions, debris is produced. Once the clas-
sification step has predicted which remnants, if any, exist,
the regression models are called on to predict the proper-
ties of the existing remnant(s) and debris.

The regression techniques that we consider in this work
are polynomial chaos expansion (PCE), Gaussian pro-
cesses (GP), eXtreme Gradient Boosting (XGB), and multi-
layer perceptrons (MLP). The latter two techniques—
XGB and MLP—are additionally used in the classifica-
tion step. We compare these data-driven techniques to the
the most commonly employed analytic model, perfectly
inelastic merging (PIM), as well as two more advanced
semi-analytic techniques, the impact-erosion model (IEM)
(Genda et al. 2017) and EDACM (Leinhardt and Stewart
2012).

In discussing the training and validation of the classifi-
cation and regression models in this work, we adopt the
terminology used in ML literature to describe the mod-
els, their parameters, and their associated input and out-
put. In particular, we refer to the pre-impact parameters
as features, the process of selecting these features as fea-
ture selection, and the analysis of the relationships be-
tween pre- and post-impact properties as feature impor-
tance. The meta-parameters that define the architectures
and numerical behavior of the models are referred to as
hyperparameters, and the process of selecting an optimal
set of hyperparameters is known as hyperparameter opti-
mization (HPO). The post-impact quantities that we are
attempting to predict would usually be referred to as tar-
gets in this terminology. However, in order to avoid con-
fusion with the target body involved in the collision, we
simply refer to them as post-impact quantities/properties.

3.1 Emulation pipeline
The emulation pipeline is comprised of two distinct stages:
classification and regression. In the first stage, a classifier is
used to predict how many post-impact remnants are pro-
duced by the collision (0, 1, or 2). In the second stage, a

set of single-target regressors are used to predict the post-
impact properties of the debris and existing remnants.

3.1.1 Classification stage
A classification step is necessary to determine which post-
impact properties need to be predicted by the regression
models. The classification step must therefore determine
which post-impact remnants are produced by the colli-
sion. In this work, we consider at most two post-impact
remnants; the resulting classes are 0 (no remnants), 1 (one
remnant; the LR), and 2 (two remnants; the LR and SLR).

We consider two distinct strategies for classifying the
number of post-impact remnants. In the first strategy, we
first use a binary classification model to predict whether
or not the LR exists. If it does not, the collision is assigned
a label of 0 (no remnants). If it does exist, a second binary
classification model is called on to predict whether or not
the SLR exists. If it does not, the collision belongs to class 1
(LR only). If the SLR is predicted to exist, then the collision
belongs to class 2 (LR and SLR). We refer to this strategy as
sequential binary classification. This strategy requires two
classification models.

In the second strategy, known as multiclass classifica-
tion, a single classification model is used to predict the
number of post-impact remnants directly (i.e., either 0, 1,
or 2). For both strategies, we test both MLP and XGB clas-
sification models.

3.1.2 Regression stage
The approach to collision emulation introduced here pro-
duces a single classifier and a set of single-target regression
models, whereby each regression model is optimized for a
specific post-impact property. With this strategy, the re-
gression models are simple and achieve optimal accuracy
for each individual post-impact property. However, the
drawback of decoupling the post-impact quantities from
one another is that the resulting regression models are ag-
nostic to the underlying physical relationships and con-
straints between the quantities (e.g., mass conservation).
It’s therefore not guaranteed that the emulator predictions
will be physically self-consistent. In this paper, we focus
on comparing the accuracy of regression strategies and in
a forthcoming paper, we introduce a method for imposing
physical constraints and self-consistency on the regression
models.

3.2 Analytic & semi-analytic methods
The following sections introduce the analytic and semi-
analytic methods considered in this work. The PIM model
is an extremely simplified analytic prescription, but has
been used in most N-body simulations to date. The semi-
analytic models were developed on much simpler datasets
than the one against which they are evaluated in this work.
These datasets did not include variable core mass frac-
tions, rotation, or orientations, however we evaluate them
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on our dataset to show that they are not able to generalize
to include these effects and should therefore be replaced
by data-driven methods.

3.2.1 Perfectly Inelastic Merging (PIM)
PIM is an analytic method in which all collisions are
treated as perfectly inelastic mergers.c In a perfectly inelas-
tic merger, the masses and momenta of the colliding bod-
ies are conserved in a single post-impact remnant. There
is no net conversion of kinetic energy into other forms
such as heat, noise, or potential energy during the impact.
This is the simplest possible model for emulating the out-
come of a pairwise collision while maintaining physical
self-consistency (but not accuracy).

The outcome of a perfectly inelastic merger is always a
single remnant, which we refer to here as the LR for consis-
tency. There are no additional remnants or debris. PIM can
predict the mass and core mass fraction of the LR, and can
additionally make naïve predictions of certain rotational
parameters for the LR. PIM has been employed in the vast
majority of N-body simulations to date. Details of our im-
plementation of PIM can be found in Appendix B.

3.2.2 Genda et al. (2017) (IEM)
The impact-erosion model (IEM) is a semi-analytic model
for gravity-dominated planetesimals (Genda et al. 2017).
IEM predicts the normalized mass of the debris (Mnorm

deb ) as
a function of the specific impact energy (QR) scaled to the
catastrophic disruption threshold (Q′�

RD). The normalized
mass of the debris Mnorm

deb is expressed as,

Mnorm
deb = 0.44φ max(0, 1 – φ) + 0.5φ0.3 min(1,φ), (4)

where φ = QR/Q′�
RD. IEM assumes that only a single rem-

nant is produced by the collision (referred to as the LR for
consistency) and therefore Mnorm

LR can be determined via
a straightforward relation, Mnorm

LR = 1 – Mnorm
deb . For consis-

tency, we use the same values of QR and Q′�
RD in the cal-

culations of IEM and EDACM. Details of the calculation
of QR and Q′�

RD used here and in EDACM can be found in
Appendix C.

3.2.3 Leinhardt and Stewart (2012) (EDACM)
EDACM is a set of analytic relations that predict the
masses of the LR, SLR, and debris, as well as the core mass
fraction of the LR (Leinhardt and Stewart 2012) via a man-
tle stripping law (Marcus et al. 2010). In order to evaluate
and compare the performance of EDACM to the other em-
ulators developed in this work, we implemented EDACM
as prescribed in Leinhardt and Stewart (2012). EDACM
has been used in several recent N-body studies of planet
formation (Carter et al. 2015; Quintana and Lissauer 2017).
Most notably, EDACM allows for collision outcomes with
more than one remnant (referred to as fragmentation) and

is thus capable of predicting a larger set of post-impact pa-
rameters than either PIM or IEM. We give a brief overview
of EDACM in Appendix C and explain where our imple-
mentation differs from that used in previous studies.

3.3 Data-driven methods
The analytic and semi-analytic models presented in the
preceding section express an relatively simple relation-
ships, based on naive physical assumptions (perfect merg-
ing) or fits to empirical data (IEM and EDACM). In con-
trast, the data-driven models that follow use machine
learning algorithms to construct an approximate mapping
between the pre-impact properties and individual post-
impact properties. These non-linear mappings are derived
purely from a training dataset of collision simulations.

3.3.1 Polynomial chaos expansion (PCE)
PCE is a popular technique in the field of UQ, where it is
typically used to replace a computable-but-expensive com-
putational model with an inexpensive-to-evaluate polyno-
mial function (Ghanem and Spanos 1991). In this work,
we use a PCE based on tensor products of Legendre poly-
nomials (Benner et al. 2017). Recent work has demon-
strated that data-driven PCE models can yield point-
wise predictions with accuracies comparable to that of
other machine learning regression models (e.g., neural net-
works) (Torre et al. 2019). In this work, we use UQLab
(Marelli and Sudret 2014) to train and evaluate all PCE
models. The documentation for UQLab is freely available
at https://www.uqlab.com/documentation. An overview
PCE as used in this work is provided in Appendix D.

3.3.2 Gaussian processes (GP)
GPs are a generic supervised learning method designed
to solve regression and probabilistic classification prob-
lems (Rasmussen and Williams 2005). They are a non-
parametric method that finds a distribution over the pos-
sible functions f (x) that are consistent with the observed
data. ML algorithms that involve a GP use a measure of
the similarity between points (the kernel function) to pre-
dict a value for an unseen point from training data. The
Gaussian radial basis function (RBF) kernel is commonly
used, however in this work we test multiple kernels, in-
cluding the constant, Matérn (ν = 3/2), rational quadratic,
and RBF kernels (see Table 4).

A potential downside of GPs is that they are not sparse
(i.e., they use all of the sample and features information to
perform the prediction) and they lose efficiency in high di-
mensional spaces (Rasmussen and Williams 2005). While
our 12-dimensional space is relatively small for GPs, the
number of training examples is much larger than that for
which GPs are generally employed. More advanced algo-
rithms have been suggested to improve the scaling of GPs,
such as bagging and enforced sparsity, but we have not at-
tempted to implement these here. A brief mathematical in-
troduction to GPs is provided in Appendix E.

https://www.uqlab.com/documentation
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Table 4 Summary of hyperspaces for the data-driven models
investigated in this work. For the GP, MLP, and XGB models, the
optimization algorithm (see Sect. 3.5) searches these spaces over
100 iterations to identify the most performant hyperparameter
set for each model

Method Hyperparameter Range

MLP Number of layers ∈ {1, 2, 3}
Neurons per layer ∈ {1, 2, . . . , 24}

GP Kernel Constant, Matérn 3/2, rational
quadratic, radial-basis
functions

Noise (α) ∈ [0, 10–2]
Kernel restart ∈ {0, 1, . . . , 5}

XGB Number of estimators ∈ {1, 10, . . . , 1000}
Maximum tree depth ∈ {3, 4, . . . , 12}
Column subsample ratio ∈ {0.5, . . . , 1}

PCE Polynomial order ∈ {2, 3, . . . , 15}
q-norm ∈ {0.5, 0.6, . . . , 1.0}
Maximum interaction ∈ {2, 3, . . . , 5}
Feature importance = 0.01

3.3.3 eXtreme Gradient Boosting (XGB)
XGBoost (XGB) is an open-source decision-tree-based en-
semble ML algorithm that uses a gradient boosting frame-
work (Chen and Guestrin 2016). It has become one of the
most popular ML techniques in the previous years and is
well documented. Gradient boosting is a machine learn-
ing technique for regression and classification problems
which produces a prediction model in the form of an addi-
tive expansion of simple parameterized functions h (typi-
cally called weak or base learners) (Friedman 2001). These
base learners are usually simple classification and regres-
sion trees (CART). In gradient boosting, the base learners
are generated sequentially in such a way that the present
base learner is always more effective than the previous one.
Thus, the overall model improves sequentially with each it-
eration. A detailed overview of the XGB models used here
is available in Appendix F.

3.3.4 Multi-Layer Perceptron (MLP)
MLPs are a class of feed-forward deep neural network that
consist of multiple, fully-connected (i.e., dense) hidden
layers. In MLPs, the mapping f between the pre- and post-
impact parameters is defined by a composition of func-
tions g1, g2, . . . , gn (n being the number of layers in the net-
work), yielding,

f (�x) = gn
(· · · g2

(
g1(�x)

))
, (5)

where each function gi(wi, bi, hi(·)) is parameterized by a
weights matrix (wi), a bias vector (bi), and an activation
function (hi(·)). The weights matrix and bias vector are the
parameters of the network that are tuned by minimizing a

loss function which measures how well the mapping f per-
forms on a given dataset. In this work, the MLPs are imple-
mented with Python’s Keras library and models consist
of an input layer with 12 nodes, one to three hidden layers
with up to 24 nodes each, and an output layer with a sin-
gle node (i.e., a scalar output). All activation functions in
the resulting network are the Rectified Linear Unit (ReLU).
A detailed overview of the MLPs used in this work is pro-
vided in Appendix G.

3.4 Data pre-processing
Prior to training the classfication and regression models,
a number of transformations are applied to the pre- and
post-impact quantities. For regression tasks, these trans-
formations ensure that the training data is well-defined
(i.e., undefined values are removed). For classification
tasks, the transformations encode either binary or mul-
ticlass labels. In both cases, the transformations generally
improve training efficiency and performance. We describe
these transformations here.

3.4.1 Classification
In order to provide training and test labels for the clas-
sification models, we encode collision outcomes as inte-
gers. These labels depend on whether the model is a bi-
nary classifier or multiclass classifier. In binary classifica-
tion, the labels encode whether the remnant (LR or SLR,
depending on the task) exists or not, whereby the labels are
0 (does not exist) or 1 (exists). In multiclass classification,
the outcomes are encoded as 0, 1, or 2, where the label cor-
responds directly to the number of post-impact remnants.
These labels are defined for all collisions and the classifica-
tion models will therefore always leverage the full training
dataset.

3.4.2 Regression
Of the post-impact properties that we consider in this
work, the mass and angular momentum properties are al-
ways defined as either zero (in the case where the associ-
ated remnant doesn’t exist) or a finite number. However, in
the case of all other post-impact properties, the property’s
value will be undefined if the associated remnant does not
exist. Therefore, before training the regression models, it
is necessary to first remove entries from the dataset where
the target value is undefined.

Undefined entries occur when either the LR or SLR
was not produced by a collision. This is often the case in
head-on, high-velocity impacts, after which only debris is
present, and in the case of mergers, in which no SLR sur-
vives. Because collision outcomes with an LR are more
common than those with both an LR and SLR, the resulting
training and test set sizes for the regression models will dif-
fer between LR, SLR, and debris properties. The training
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set size will therefore be largest for debris (which is pro-
duced in all collisions) properties, smaller for LR proper-
ties, and smallest for SLR properties. However, to reiterate,
this is only the case for properties not related to the mass
or angular momentum, which are defined in all cases.

3.4.3 Standardization
In both classification and regression tasks, the pre-impact
quantities are standardized to improve training efficiency
and performance. For regression tasks, the post-impact
quantities are standardized in the same manner as the pre-
impact quantities.

The procedure for standardizing the input data differs
between PCE and the other data-driven methods. In the
case of PCE, the input parameters are linearly mapped into
a hypercube [–1, 1]12, within which the distribution of the
transformed features is still uniform.

For the other methods, the pre- and post-impact param-
eters are scaled using the standard scaling method. The
result of standardization (a.k.a. Z-score normalization) is
that the features will be rescaled such that they evince the
properties of a standard normal distribution, μ = 0 and
σ = 1, where μ and σ are the mean and standard devia-
tion of the distribution, respectively. The z-values are then
calculated as,

z =
x – μ

σ
. (6)

Standardization is a general requirement for many ML
algorithms. The only family of algorithms that are scale-
invariant are tree-based methods (e.g., XGB). However,
since we are comparing several different ML algorithms
here, some of which depend strongly on standardization,
we standardize the input and output features for all tech-
niques (except as noted above for PCE).

3.4.4 Subsampling
The classification and regression performances reported
in Tables 5 and 6, respectively, are for models trained on
the full training dataset (N = 11,884). However, for the pur-
pose of investigating performance as a function of dataset
size, we have sub-sampled the training dataset to create a
series of smaller datasets. These subsets were generated by
drawing random samples from the training dataset while
the holdout test dataset remains unchanged.

We created training subsets with set sizes increasing in
steps of 100 up to 1000 and from thereon in steps of 1000
up to 11,000. Note that there is a difference between the
training set size (TSS) and the effective TSS on which the
regression models are actually trained. Because we remove
undefined values in the pre-processing step, the effective
TSS is dependent on the post-impact property in question.
The effective TSS is therefore generally lower than the TSS

Table 5 Performance of the classification methods in this work.
The accuracy is reported for the binary, sequential binary, and
multiclass classification models. For the sequential binary and
multiclass classifiers, the labels are analogous to the number of
post-impact remnants (0,1,2). For the binary classifiers, the labels
correspond to whether the LR/SLR exists (1) or not (0)

Type Classes Method Accuracy

Binary (LR) 0 | 1,2 MLP 0.9879
XGB 0.9882

Binary (SLR) 0,1 | 2 MLP 0.9680
XGB 0.9731

Sequential Binary 0 | 1 | 2 MLP 0.9563
XGB 0.9616

Multiclass 0 | 1 | 2 MLP 0.9532
XGB 0.9627

for LR quantities and even lower for SLR quantities. To re-
iterate, this is because the number of remnants depends
on the initial conditions of the collision. Outcomes with an
LR are more common than outcomes with both an LR and
SLR. This also affects the holdout test dataset. This is im-
portant because the effective test set size (Ntest) determines
the expected variance σ of the performance measures,

3.5 Hyperparameter optimization (HPO)
Once the data has been pre-processed, we perform HPO
in order to identify the optimal set of hyperparameters for
each data-driven model. The HPO procedure for PCE—
which is implemented with MATLAB/UQLab—is different
from that of the methods implemented in Python (i.e.,
GP, MLP, and XGB). In the case of the latter methods, we
used the hyperopt library to identify the optimal hy-
perparameters for each model and post-impact parame-
ter pair. The hyperopt package is a Python library de-
signed to optimize hyperparameters over awkward search
spaces with real-valued, discrete, and conditional dimen-
sions, which makes it ideal for iterating machine learning
hyperparameters. We employed hyperopt’s Bayesian se-
quential model-based optimization (SMBO) with a Tree-
structured Parzen Estimator (TPE), which we found con-
verged on optimal architectures more quickly than purely
random or grid-based strategies.

The Python-based HPO procedure identifies an optimal
architecture over 100 iterations. Each step in the HPO pro-
cedure employs a 5-fold cross-validation on the training
dataset, using 80% of the training dataset for training and
the remaining 20% as a validation set. At no point dur-
ing HPO do the models see the holdout test dataset. For
classification tasks, the negative average accuracy score
(Sect. 3.6.1) across all five folds was used as the objective
loss function during HPO. For regression tasks, the neg-
ative average r2-score (see Sect. 3.6.2) across all five folds
was used as the objective loss function.
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Table 6 Coefficients of determination (r2-scores) for the analytic, semi-analytic, and data-driven methods investigated in this work. The
data-driven models were trained on the train dataset and all models were evaluated on the holdout test dataset. The r2-scores
quantify the correlation between the predicted and “true” values of the post-impact parameters, where the true values are obtained
from SPH simulations. Entries listed as n/a indicate the method was not designed to make a prediction for the parameter in question.
Mass and angular momentum properties reflect the performance of the classification step, whereas the other properties quantify only
the regression performance (see: Sect. 3.6.3). The (semi-)analytic methods use the classification scheme inherent to those methods,
while the data-driven methods use a multiclass XGB classifier

Parameter (Semi-)analytic Data-driven

PIM IEM EDACM PCE GP XGB MLP

ξ –1.1196 0.7518 0.6421 0.9733 0.9355 0.9793 0.9896

MLR –0.0392 0.7698 0.6932 0.9741 0.9571 0.9829 0.9863

Mnorm
LR –1.7384 0.3950 0.2436 0.9415 0.9031 0.9747 0.9803

Fcore
LR 0.5549 n/a –0.0792 0.9564 0.9450 0.9516 0.9568

JLR –144.4870 n/a n/a 0.8162 0.7857 0.9121 0.9045

�LR –347.4151 n/a n/a 0.8831 0.8702 0.9229 0.9133

θLR –0.9391 n/a n/a 0.8589 0.8278 0.8852 0.8764

Fmelt
LR n/a n/a n/a 0.9084 0.9647 0.9762 0.9798

δmix
LR –1.2559 n/a n/a 0.9251 0.8942 0.9710 0.9747

MSLR –1.7159 –1.7159 0.0773 0.9601 0.8257 0.9442 0.9418

Mnorm
SLR –4.2472 –4.2472 –1.3057 0.9409 0.7052 0.9317 0.9028

Fcore
SLR n/a n/a n/a 0.9141 0.9265 0.9426 0.9332

JSLR n/a n/a n/a 0.8893 0.8285 0.8819 0.8713

�SLR n/a n/a n/a 0.8803 0.9140 0.9044 0.9073

θSLR n/a n/a n/a 0.8080 0.7933 0.8176 0.7969

Fmelt
SLR n/a n/a n/a 0.9272 0.9720 0.9693 0.9749

δmix
SLR n/a n/a n/a 0.7864 0.7897 0.8171 0.7714

Mdeb –0.5495 0.8635 0.7346 0.9672 0.9647 0.9867 0.9933

Mnorm
deb –0.8056 0.8448 0.7469 0.9848 0.9685 0.9895 0.9937

FFe
deb n/a n/a n/a 0.9419 0.8811 0.9396 0.9538

δmix
deb n/a n/a n/a 0.6436 0.5257 0.6747 0.6722

θ̄deb n/a n/a –0.0227 0.3903 0.3364 0.4834 0.4653

θ stdev
deb n/a n/a –12.0333 0.8680 0.8634 0.9095 0.8812

φ̄deb n/a n/a –19.7818 0.8168 0.7969 0.8603 0.8299

φstdev
deb n/a n/a –0.7637 0.7657 0.7475 0.8149 0.7787

The PCEs considered in this work have two distinct
groups of hyperparameters. The HPO procedure for PCE
searches over only one of these groups. The first group
contains the maximal polynomial order, p, of the PCE and
q-norm. A grid of these parameters is searched for the best
configuration using a greedy algorithm (in that the opti-
mal values for p and q-norm are only approximated). The
second group of parameters consists of the maximum in-
teraction, r, and the feature importance threshold. These
parameters were optimized by trial and error. It is common
to set r to very low values (∼ 2–3) following the sparsity-
of-effects principle (Marelli and Sudret 2017). Here, we use
a larger value of r = 4, which results in more expensive
training of the PCEs. We found that this value leads to
the best performance, whereas higher values of r render
the training even more expensive and does not substan-
tially increase the performance (and in some cases leads

to worse performance). The feature importance threshold
was not varied, but rather set to 1% as it has been noticed
that this is a conservative cut that still reduces the compu-
tation cost of PCE noticeably.

Each of the four data-driven methods requires a unique
set of hyperparameters. The hyperparameter spaces
searched for each emulation method are summarized in
Table 4.

Because we do not enforce sparsity in the GPs used in
this work, they require prohibitively long training times as
dataset sizes increase. Therefore, for the GP models, we
only carry out HPO up to training set sizes of N = 1000.
Beyond this training set size, we do not attempt HPO for
GP models, but instead recycle the optimal hyperparame-
ters identified for the GP models at N = 1000 for each post-
impact property.
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3.6 Performance evaluation
Once an optimal architecture was identified by the HPO
procedure, the optimal architecture was re-trained on
100% of the training dataset. The resulting model was then
evaluated on the holdout test dataset. Evaluating the per-
formance of either a classication or regression model re-
quires a carefully chosen metric appropriate to the prob-
lem.

3.6.1 Classification
In order to evaluate the performance of our classification
models, we consider two metrics. The first, the accuracy
score, is simply the fraction of correct predictions over the
total number of predictions,

acc =
TP + TN

TP + TN + FP + FN
, (7)

where predictions are either true positives (TP), true neg-
atives (TN), false positives (FP), or false negative (FN). As
we are not more concerned by either false positives (FP)
or false negatives (FN), this metric is well suited evaluat-
ing our classification models.

However, while the accuracy quantifies the rate of cor-
rect predictions, it does not give any information as to the
nature of the incorrect predictions. We therefore also con-
sider the distribution of mass residuals resulting from the
incorrect predictions (FP and FN predictions). Given two
classification models with identical accuracy, the model
with the lower mean and standard deviation in its resid-
ual distribution is preferred.

3.6.2 Regression
There are several commonly employed regression metrics
that are not suitable for collision emulation due to the
range of the post-impact properties. For example, mean
squared error (MSE) is not scale invariant and relative er-
ror metrics are ill-suited to the many parameters that can
take on null values. For this reason, we use the coefficient
of determination, known as the r2-score, to measure the
quality of the regressors,

r2 = 1 –
SSres

SStot
, (8)

where SSres =
∑

i(yi – ŷi)2 is the residual sum of squares
and SStot =

∑
i(yi – ȳ)2 is the total sum of squares. Here,

yi is the ith expected value, ȳ is the mean of the expected
distribution, and ŷi is the ith predicted value. The r2-score
has been used as the performance metric in similar work
(Cambioni et al. 2019) and is therefore a prudent choice in
order to make comparisons to other studies.

In addition to the r2-score, which quantifies the regres-
sion performance globally, we also consider the residu-
als as a function of each individual pre-impact property.

Because we consider 12 pre-impact properties, 27 post-
impact properties, and four data-driven models, the num-
ber of residual plots is in excess of a thousand. We therefore
provide the residuals for a single post-impact property (ac-
cretion efficiency) at the end of the paper (Figs. 8–11) and
provide the remaining residual plots as Additional file 1.

3.6.3 Linking classification and regression
Ideally, in order to evaluate the performance of our emu-
lation method, we would evaluate the performance of the
classification and regression models together, as a unified
emulation pipeline. However, for many of the post-impact
properties, false positive (FP) and false negative (FN) pre-
dictions in the classification stage result in meaningless re-
gression predictions which cannot be evaluated by the re-
gression metric. When evaluating the regression models,
we must therefore be careful to distinguish which models
reflect the classification performance in their r2-scores and
which do not.

Mass and angular momentum properties In the case of
either a FP or FN prediction by the classifier, these prop-
erties have physically meaningful values; these properties
take on null values when they don’t exist and can there-
fore be incorporated into the regression performance met-
ric. Thus, the r2-scores for these properties reflect the per-
formance of both the classification and regression models
used in the emulation pipeline.

Other properties For these properties, in the case of a FP
prediction by the classifier, there is no meaningful value
with which to compare the subsequent regression predic-
tion. In the case of a FN prediction, there is no default value
of the property to use as the “predicted” value. Indeed, the
values of these properties do not trend toward any particu-
lar value as the mass of the associated remnant approaches
zero. It is therefore not possible to incorporate the misclas-
sified collisions into the r2-scores of these properties. As a
result, the r2-scores for these properties reflects only the
performance of the regression model used in the pipeline.

The analytic and semi-analytic emulation methods in-
clude their own classification schemes, which are used in
evaluating their regression performance. The data-driven
emulation methods use a multiclass XGB classifier (see
Sect. 3.4.1) during the classification stage.

3.7 Feature importance
The data-driven techniques that we consider in this work
allow us to evaluate and compare feature importance for
each post-impact property. Importance metrics are pow-
erful methods for quantifying relationships between pre-
and post-impact parameters. In this work, we report Sobol’
indices derived from PCE and SHAP values derived from
XGB models. We consider feature importance metrics



Timpe et al. Computational Astrophysics and Cosmology             (2020) 7:2 Page 16 of 38

from these distinct methods in order to compare how fun-
damentally different techniques make their predictions. If
both methods leverage the same pre-impact properties to
predict a given post-impact properties, then this would
strongly indicate an underlying physical relationship be-
tween the pre- and post-impact properties.

3.7.1 Sobol’ indices
Sobol’ indices (Sobol’ 1993; Le Gratiet et al. 2016) measure
how sensitive a given post-impact parameter is to each of
the individual pre-impact parameters, as well as to any of
their interactions. The indices quantify the relative contri-
bution of variance explained by one variable—or group of
variables—to the total variance,

Si1...is =
σ 2

i1...is
σ 2 , (9)

where Si1...is is the Sobol’ index of order s. The first order
Sobol’ indices are the values Si which characterize the vari-
ance explained by the variable xi. The higher order Sobol’
indices (second order Sij with i 
= j etc.) quantify how much
variance is explained not by single variables but rather by
their interactions.

The Sobol’ indices are a particularly useful sensitivity
measurement tool in the context of PCE because a Sobol’
decomposition can be computed directly from a PCE by
employing a simple reordering of terms. Hence the com-
putation of Sobol’ indices from a PCE is analytic and ex-
act. For a more thorough introduction to Sobol’ sensitivity
analysis we refer to the following references (Marelli et al.
2017; Le Gratiet et al. 2016).

3.7.2 SHAP (SHapley Additive exPlanation) values
To understand how our models are making certain pre-
dictions we use the SHAP framework proposed in Lund-
berg and Lee (2017). This is based on Shapley values (Roth
1988), introduced in a game theory context as a solution
to fairly distributing gains and costs of a given game v to
a set of collaborating players N . The Shapley value φ of
one player i is the average expected marginal contribution
of player i after all possible combinations of other players
(denoted as S) have been considered:

φi(v) =
1
n

∑

S⊆N\{i}

(
n – 1
|S|

)–1(
v
(
S ∪ {i}) – v(S)

)
.

Analogously, in the context of model interpretability, the
game v is how well the model output is represented (for a
fixed input x) and the set of players N are the features. In
Lundberg and Lee (2017), the game v(S) is defined as the
conditional expectation E(f (x)|xS), for model f , observa-
tion x and xS , the observation in which the features coin-
cide with observation x on the set of features S. To avoid
the necessity to train many models that include or exclude

features to evaluate v(S), specific model based approxima-
tions can be used. In our work, SHAP values are computed
from the gradient boosting models as described in Lund-
berg et al. (2018).

4 Results
The following sections describe the performance of the
classification and regression models, dependence on the
training set size (TSS), and the results of the feature im-
portance analyses. We first discuss the performance of the
classification strategies and models. We then discuss the
performance of the single-target regression models for the
post-impact properties considered in this work and their
dependence on TSS. Finally, we report the feature impor-
tance results.

4.1 Classification performance
We considered two distinct classification strategies. In the
first strategy, we trained one multitarget classifier to di-
rectly classify the number of post-impact remnants (0, 1,
or 2). In the second strategy, we trained two binary classi-
fiers to separately classify the existence of the LR and SLR.
These binary classifiers were then used in sequence to clas-
sify, first, if a single remnant (the LR) exists and, if so, does
a second remnant (the SLR) exist? This second strategy,
which we refer to as sequential binary classification, pro-
duces the same class labels (0, 1, or 2) as the multitarget
classifier and can therefore be compared directly. For each
strategy, we tested both MLP and XGB models.

In order to evaluate and compare the classification
strategies, we considered the prediction accuracy, as well
as the distribution of mass residuals resulting from false
negative (FN) and false positive (FP) predictions. The ac-
curacy of the data-driven classification models is reported
in Table 5. As is evident from these results, the accuracy of
both classification strategies, regardless of the underlying
model (i.e., MLP or XGB), is practically identical. Confu-
sion matrices for the two strategies are provided in the top
panels of Fig. 4.

The mass residuals resulting from FP and FN predic-
tions, as evaluated on the holdout test dataset, are shown
in the middle panels of Fig. 4. The mass residuals are com-
puted as follows: For FP predictions, the predicted value,
ypred, has been predicted by the associated XGB regression
model. For FN predictions, the residual is given by the true
value, ytrue. The distribution of residuals produced by the
classifier is an important consideration, especially in light
of the indistinguishable accuracy scores. Over the course
of an N-body simulation, we would prefer that the resid-
uals do not show a significant bias (i.e., the distribution
mean should be as close to zero as possible) and the stan-
dard deviation should be minimized. The means and stan-
dard deviations of the mass residual distributions result-
ing from the sequential binary classifier are μLR = 0.0215
and σLR = 0.1679 for the LR and μSLR = –0.0146 and σSLR =
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Figure 4 Comparison of classification strategies. Performance metrics for two distinct classification strategies: binary sequential (left column) and
multiclass (right column). In the top panels, the confusion matrices for each strategy are shown; each collision is plotted as its predicted label (rows)
and true label (columns). Predictions along the diagonal are correct classifications, whereas those in off-diagonal cells are misclassifications. In the
middle panels, the distribution of masses resulting from false negatives (FN) and false positives (FP) are plotted. These mass residuals are important
to constrain, because FP and FN predictions cannot be quantified in the regression stage. In the bottom panels, the classifier predictions are plotted
along the b∞–v∞ hyperplane, where gray indicates class 0 (no remnants), blue is class 1 (one remnant), orange is class 2 (two remnants), and
misclassified collisions are indicated by red markers. The misclassified collisions are clustered near the transitions between classes

0.1139 for the SLR. For the multiclass classifier, the means
and standard deviations are μLR = 0.0521 and σLR = 0.1640
and μSLR = –0.0119 and σSLR = 0.1068.

In the bottom panels of Fig. 4, the distribution of mis-
classified collisions is shown along the b∞ – v∞ hyperplane
(roughly corresponding to the collision geometry). This
illustrates, unsurprisingly, that the misclassfied collisions
are concentrated near the transitions between classes. The
misclassified points are clustered tightly around the transi-
tion from merging to hit-and-run type outcomes, which is
expected because this transition is a sharp transition in the
parameter space. The other misclassified points are largely

concentrated in the regime that represents the transition
from no remnants, to one remnant, and then to two rem-
nants in the hit-and-run regime.

Just as with the classification accuracy and the mass
residual means and standard deviations, the distributions
of misclassfied collisions are practically identical. Thus,
there is no discernible difference between the performance
of the classification strategies, nor between the MLP and
XGB models. We suggest that the multiclass classifica-
tion strategy is therefore to be preferred on account of its
simpler implementation and reduced computational over-
head.
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4.2 Regression performance
We now discuss the performance of the regression mod-
els with respect to the subset of post-impact properties
investigated in this work (Table 3). The performances of
the regression models on each post-impact property are
quantified by r2-scores (see Sect. 3.6.2) and are tabulated
in Table 6. Given the large number of post-impact proper-
ties, we first describe a few general results that are apparent
from the regression performances:

• For all post-impact properties, the data-driven models
outperform the analytic and semi-analytic methods.
Only in the case of the debris mass, Mdeb, do the
semi-analytic methods approach the accuracy of the
data-driven methods.

• The MLP and XGB models consistently perform best
and, to within the expected variance, achieve
equivalent accuracy for most post-impact properties.

• The PCE models tend to achieve r2-scores slightly
below those of the MLP and XGB models, with the
notable exception being the case of the SLR
(normalized) mass, where PCE outperforms the other
methods.

• For most post-impact properties, the GP models
perform significantly worse than the other data-driven
methods. However, they still perform significantly
better than the analytic or semi-analytic methods.

• Despite having the largest effective training set size
(N = 11,884), some debris properties proved difficult
to regress, including the mixing ratio and the spatial
distribution properties.

4.2.1 Analytic & semi-analytic methods
The analytic and semi-analytic methods investigated in
this work achieved relatively poor r2-scores relative to the
data-driven methods. While limited to a narrow set of
parameters, IEM is the most accurate of these methods
for LR properties, where EDACM performs significantly
worse. PIM performs worst, with the notable exception
that it excels at predicting the core mass fraction of the LR.

The analytic and semi-analytic methods’ regression per-
formances on MLR are significantly below that of the data-
driven methods, achieving r2-scores of 0.7698 and 0.6932
for IEM and EDACM, respectively. Their relative perfor-
mance is somewhat surprising, as EDACM uses an explicit
relationship to predict MLR, whereas IEM only predicts
Mdeb and provides no explicit relation for MLR. PIM does
poorly when predicting MLR. This latter result is perhaps
not surprising, as PIM assumes all collisions result in per-
fect accretion and studies have shown that this is not the
case in most collisions (Quintana et al. 2016).

Of the analytic and semi-analytic methods, only EDACM
is capable of making explicit (non-zero) prediction for
MSLR (Mnorm

SLR ). The resulting r2-score, 0.0773 (–1.3057), is
much worse than the associated score for its prediction of

MLR (Mnorm
LR ). EDACM’s significantly worse performance

when predicting the mass of the SLR as opposed to the
LR is likely influenced by two important aspects of the
EDACM algorithm. First, EDACM delineates collisions
into multiple regimes (e.g., perfect merging, hit-and-run),
in which different analytic relations are used. Second, the
calculation of MSLR uses MLR as an input (via Mnorm

LR ; see
Eq. (25) in Appendix C). Thus, any error in the prediction
of MLR will propagate to the prediction of MSLR. Note that
the data-driven models do not suffer from this issue, as
the prediction of the post-impact properties are entirely
decoupled from each other.

In the case of the debris properties, only IEM explicitly
predicts the mass. IEM predicts Mnorm

deb , from which Mnorm
LR

is subsequently derived. IEM’s prediction of Mnorm
deb is sur-

prisingly good with an r2-score of 0.8448, but still approx-
imately 10% lower than that of the data-driven methods.
This reverse approach taken by IEM, first predicting the
Mnorm

deb , allows it to make an accurate, if implicit, predic-
tion of MLR, relative to the other analytic and semi-analytic
methods.

We additionally compared the ability of the analytic and
semi-analytic methods to predict the normalized mass
quantities. In the case of the LR, this resulted in signif-
icantly worse performance for these methods. Similarly
for IEM and EDACM, the r2-scores are significantly lower
when predicting the normalized masses of the LR and SLR,
but are similar for the debris mass. The poor performance
of the analytic and semi-analytic methods on the normal-
ized quantities is expected as a side-effect of how the r2-
score is calculated. Because the normalized quantities are
scaled by the total mass of the collision (Mtot, which is dif-
ferent for each collision), the distribution of Mtot skews the
predicted distribution of MLR. Thus, the normalized quan-
tities are only of interest to the data-driven methods, which
predict the normalized masses directly and therefore don’t
suffer from this issue.

The core mass fraction of the LR (Fcore
LR ) is predicted

by both PIM and EDACM (via a mantle stripping for-
mula (Marcus et al. 2010)). Here, PIM performs unexpect-
edly well, yielding an r2-score of 0.5549. PIM’s unexpected
performance on Fcore

LR provides physical insight into the
processes that determine Fcore

LR , suggesting that the cores
of pre-impact bodies often merge. In contrast, EDACM
yields an objectively poor r2-score of –0.0792 for Fcore

LR , de-
spite utilizing a more complicated formulation.

For both Fcore
LR and MSLR, a large factor in EDACM’s

poor performance are the collisions that comprise the
super-catastrophic disruption (SCD) regime (Leinhardt
and Stewart 2012) (see Appendix C). In Fig. 5, it’s clear that
MLR is systematically under-predicted for a subset of col-
lisions, which corresponds to the SCD regime. The poor
predictions in this subset of collisions are propagated to
the calculations of both Fcore

LR and MSLR, causing the for-
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mer to be systematically over-predicted and the latter to
be under-predicted.

In addition to the data-driven methods, only PIM makes
any prediction of rotational properties. These predictions
were not expected to be very accurate, given the assump-
tions of the model (see Appendix B). Indeed, the resulting
regression performances are exceptionally poor. As Fig. 13
illustrates, PIM tends to greatly overestimate the angular
momentum budget of the LR (JLR), which results in similar
overestimates of its rotation rate (�LR). This has the oppo-
site effect on θLR, which is systematically underpredicted
by PIM. The obliquities are predicted to be low because
the angular momentum delivered by the impact tends to
dominate the resulting angular momentum budget.

The method for handling debris in the N-body imple-
mentation of EDACM (Chambers 2013) performs poorly
relative to the data-driven methods as well. This is un-
surprising given the simplifying assumptions of the debris
model (see Appendix C). This would suggest that more ac-
curate models for handling debris within N-body simula-
tions are sorely needed.

4.2.2 Data-driven methods
The data-driven methods universally evince better accu-
racy than the analytic and semi-analytic methods. Of the
data-driven methods, the MLP and XGB models generally
achieve the best performance, but are often matched by
the PCE models. The GP models, on the other hand, gener-
ally perform significantly worse than the other data-driven
methods.

The data-driven predictions for each post-impact prop-
erty are plotted relative to their true (i.e., simulated) values
in Fig. 5 for LR properties, Fig. 6 for SLR properties, and
Fig. 7 for debris properties (and the accretion efficiency).

In Figs. 8–11, we show the prediction residuals for accre-
tion efficiency resulting from each of the four data-driven
methods. The distribution of residuals is an important
consideration in addition to the r2-score, as it can reveal
dependencies of the residuals on individual pre-impact
properties. The most common residual dependence re-
vealed by these plots (see Additional file 1) is that which
corresponds to the boundary between the merging and hit-
and-run regimes. This manifests as increased residual val-
ues at low velocities (≈1 vesc). This dependence tends to
be particular pronounced for GP models, which are not
able to capture the relative sharp transition between these
regimes.

Given the large number of plots required to illustrate
the residuals, we show only those for a single post-impact
property (accretion efficiency) here and provide the re-
maining residuals in Additional file 1.

For a given post-impact parameter, the MLP, PCE, and
XGB models achieve similar performances. Indeed, the
differences in performance are generally small and fall

within the expected variance of the test dataset. This
demonstrates that, despite fundamentally different under-
lying methodologies, data-driven methods are capable of
achieving roughly the same performance given a suffi-
ciently large dataset.

In many cases, the performance of the GP models is be-
low that of the other data-driven models. The lower r2-
scores for GPs are likely, at least in part, a result of the
limitations on HPO for GPs. Recall that HPO is only car-
ried out for GP models on training datasets with sizes of
N ≤ 1000. Due to these limitations, the GP models are not
fully optimized on the full training dataset, while the other
data-driven methods are.

For different post-impact properties, the best achieved
accuracy can differ significantly. Given that the differ-
ent data-driven techniques are able to achieve the in-
distinguishable accuracy, this suggests that the difficultly
in reaching higher accuracy lies not with the emulation
methodology, but rather with the data or the underlying
physical processes that determine the post-impact quan-
tity. In the former case, this may be due to insufficient
fidelity of the simulations, insufficient resolution of the
training dataset, or ill-defined parameterizations of the
post-impact properties.

A known source of uncertainty in the post-impact quan-
tities is the post-impact group finding step. In subsequent
steps, the group finding algorithm can assign particles to a
group to which they were previously not a part of. While
the number of these particles is almost always small (on
the order of a few), this can have a large effect on the cal-
culation of post-impact quantities, especially for remnants
or debris fields composed of a small number of particles.

Parameters whose accuracy are likely affected by the un-
derlying physical process are, for example, the obliquities.
In this case, the limitation on performance may be a re-
sult of the obliquity (via the angular momentum vector)
being highly variable at low rotation rates. Another set of
parameters affected in this way are likely those related to
the debris field spatial distribution (e.g., θ̄deb and φ̄deb). It
may be that these quantities are inherently noisy as a re-
sult of being sensitive to small changes in the impact ge-
ometry. Parameters such as these may benefit from being
separated into distinct outcome regimes.

4.3 Dependence on training set size
In the preceding sections we have discussed the perfor-
mance of the regression models as trained on the full train-
ing dataset (N = 11,884). Here we discuss their perfor-
mance on smaller subsets of the the training data, in order
to quantify regression performance relative to dataset size.
All subsets are evaluated against the full holdout test set.

The regression performances of the emulators see their
most dramatic improvement on training dataset sizes of
less than a thousand (Fig. 12). On dataset sizes above
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Figure 5 Simulated versus predicted values for LR properties. Simulated versus predicted values for post-impact parameters related to the largest
remnant. The blue points represent individual predictions by the model, assuming perfect pre-classification of the existence or non-existence of the
remnant. The grey lines, stretching from the lower left to the upper right, indicate a 1:1 correlation. For a perfect model all blue points would lie on
this line. Cells with no points and a red line indicate that the model is not able to make predictions for the post-impact property in question

roughly a thousand, the r2-scores continue to improve
slowly until a few thousand, after which only marginal
gains are achieved. For many post-impact properties, near-
optimal performances are achieved quickly. However,
some post-impact properties continue to see improvement
with increasing training set sizes. This suggests that, while
the masses and several other properties only require rel-
atively small training datasets, other properties relevant

to terrestrial planet formation will require datasets even
larger than those considered here. This is especially true of
properties related to the SLR, for which the effective TSS
is generally about half that of the TSS for LR properties.

4.4 Feature importance
Using Sobol’ indices (Sect. 3.7.1) derived from PCE and
SHAP values (Sect. 3.7.2) derived XGB models, we quan-
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Figure 6 Simulated versus predicted values for SLR properties. Simulated versus predicted values for post-impact parameters related to the second
largest remnant. The blue points represent individual predictions by the model, assuming perfect pre-classification of the existence or non-existence
of the remnant. The grey lines, stretching from the lower left to the upper right, indicate a 1:1 correlation. For a perfect model all blue points would
lie on this line. Cells with no points and a red line indicate that the model is not able to make predictions for the post-impact property in question

tify the importance of the pre-impact properties in de-
termining each post-impact property. We consider these
two distinct metrics in order to compare how the data-
driven methods make their predictions. These feature im-
portance metrics leverage our data-driven models to pro-
vide physical insight into a high-dimensional problem that
would otherwise be difficult analyze.

4.4.1 Sobol’ analysis
The Sobol’ indices in Fig. 13 suggest that, for most post-
impact properties, the geometry and energy of the
impact—determined by γ , b∞, and v∞—are the strongest
factors in deciding the outcome of a collision. However, for
some post-impact properties, other pre-impact parame-
ters are important. This is true for the obliquities and core
mass fractions, which are generally dependent on the pre-
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Figure 7 Simulated versus predicted values for debris properties. Simulated versus predicted values for post-impact parameters related to the second
largest remnant. The blue points represent individual predictions by the model, assuming perfect pre-classification of the existence or non-existence
of the remnant. The grey lines, stretching from the lower left to the upper right, indicate a 1:1 correlation. For a perfect model all blue points would
lie on this line. Cells with no points and a red line indicate that the model is not able to make predictions for the post-impact property in question

impact values of the associated body—i.e., the target for
the LR and projectile for the SLR. Pointedly, the Sobol’
analysis also shows that the azimuthal orientation (φ) of
the pre-impact bodies tend to play an insignificant role in
the outcome of collisions.

4.4.2 SHAP values
As opposed to the global view provided by the Sobol’ in-
dices in the previous section, the SHAP values provide a lo-

cal view of feature importance for each post-impact prop-
erty. In Fig. 14, we show SHAP values on the test set for
a selected subset of post-impact properties of the LR and
SLR.

In predicting the masses of the remnants (MLR and
MSLR), the XGB models leverage the total (Mtot) and im-
pact geometry (γ , b∞, and v∞). The other pre-impact
properties—those related to the internal and rotational
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Figure 8 Accretion efficiency residuals of the PCEmodel. The r2-score alone is insufficient to assess the performance of a regressor. The distribution of
residuals for each post-impact property is an important consideration. Residuals for all post-impact properties and models are available in the
material

properties of the target and projectile—appear to play lit-
tle role in the predictions. The feature importance metrics
are largely intuitive in this case, indicating that lower to-
tal masses (Mtot) lead to lower predictions of the remnant
masses. Similarly, head-on, high-velocity impacts drive the
predictions toward lower remnant masses, which is ex-
pected in disruptive collisions.

In the case of the remnant core mass fractions, the SHAP
values indicate that the most important pre-impact prop-

erty is the core mass fraction of the associated pre-impact
body (i.e., the target for the LR and projectile for the SLR).
This is also somewhat intuitive and matches the results of
the Sobol’ analysis.

The remnant obliquities (θLR and θSLR) are relatively dif-
ficult properties to regress. These post-impact properties
show a strong dependence on the pre-impact rotation rate
(�) and obliquity (θ ) of the associated body. Once again,
the Sobol’ indices indicate the same feature importance.
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Figure 9 Accretion efficiency residuals of the GPmodel. The r2-score alone is insufficient to assess the performance of a regressor. The distribution of
residuals for each post-impact property is an important consideration. Residuals for all post-impact properties and models are available in Additional
file 1

For the obliquity of the LR (θLR), the impact velocity (v∞)
is also important.

5 Discussion
We now discuss several aspects of collision emulation that
are of interest in addition to accuracy. We begin by dis-
cussing the importance of the underlying training data.
We then discuss the relationships between pre- and post-
impact properties extracted from our data-driven models,

the technical considerations that must be made when im-
plementing such models, and finally we suggest directions
for future work that might improve the methodology and
models which we have developed here.

5.1 Training data
The results which we have presented here show that func-
tionally distinct data-driven methods can achieve equiva-
lent prediction accuracy, suggesting that further gains in



Timpe et al. Computational Astrophysics and Cosmology             (2020) 7:2 Page 25 of 38

Figure 10 Accretion efficiency residuals of the XGBmodel. The r2-score alone is insufficient to assess the performance of a regressor. The distribution of
residuals for each post-impact property is an important consideration. Residuals for all post-impact properties and models are available in Additional
file 1

accuracy are limited by the underlying training data and
not by the model algorithms. While we have demonstrated
that training dataset sizes of at most a few thousand are
sufficient to achieve high accuracy, there are still signifi-
cant improvements to be made to those datasets. Indeed,
simply increasing the training set size is not likely to sig-
nificantly improve prediction accuracy, as Fig. 12 shows.
Instead, improvements to the training dataset should be

focused in those regions where the classification and re-
gression models struggle.

In particular, Fig. 4 clearly shows that the classification
models perform poorly at the transitions between colli-
sion regimes (e.g., from merging to hit-and-run). This poor
classification performance is mirrored by increased re-
gression residuals around these transitions for many post-
impact properties. This strongly suggests that future train-
ing datasets will require improved sampling near these
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Figure 11 Accretion efficiency residuals of theMLPmodel. The r2-score alone is insufficient to assess the performance of a regressor. The distribution of
residuals for each post-impact property is an important consideration. Residuals for all post-impact properties and models are available in Additional
file 1

transitions if the models are to accurately capture their be-
havior.

The simulations that comprise the training datasets
must also be evaluated in detail. In addition to the un-
derlying CFD algorithms and material EOS used, the sim-
ulations must be stringently checked for both temporal
and numerical convergence. Temporal convergence refers
to how long a simulation requires after impact until the
post-impact properties have converged to consistent value.

Numerical convergence refers to the convergence of these
properties as the particle resolution of the simulations is
increased. Temporal convergence has the greatest effect
on the precision of the models (the ability of the models to
accurately reproduce the simulations), whereas numerical
convergence is critical for training accurate models (the
ability of the models to represent reality).

We have made an exhaustive analysis of the tempo-
ral convergence of the simulations used in this work (see
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Figure 12 Performance as a function of training set size. Performance
on the holdout test dataset (quantified by r2-scores) is shown as a
function of training set size (TSS). Regression performance for a
well-performing parameter MLR is shown in the top panel and a
relatively difficult to regress parameter θSLR the lower panel

Sect. 2.1.7), but the numerical convergence of the post-
impact parameters is still an open question. It is impor-
tant to note, however, that the numerical convergence of
the underlying training dataset does not have an effect on
the achievable accuracy of the data-driven models. Indeed,
numerical convergence leads to at most minor a shift in
the distribution post-impact values in the training dataset,
which is easily relearned by the data-driven models.

The numerical convergence of the post-impact impact
properties in this work has recently been evaluated in the
context terrestrial planet formation (Meier et al. 2020).
These results show that, of the post-impact properties
here, only the rotation rate (�), obliquity (θ ), and mixing
ratio (δmix

deb ) do not yet show numerical convergence at the
particle resolutions used here. We have already pointed
out that � is to be avoided on account of its failure to
achieve temporal convergence, but the latter two proper-
ties require further investigation.

The datasets used to train and validate the data-driven
models here include at least six additional dimensions to
any previous study of its kind, as well as more expan-
sive ranges in each of their dimensions. We have sam-
pled asymptotic relative velocities of up to 10 times the

Figure 13 Sobol’ indices. The Sobol’ index is a sensitivity metric that
quantifies the contribution of each pre-impact parameter in
determining the value of a given post-impact quantity. For all
post-impact properties, the Sobol’ analysis indicates that the
geometry of the impact is important in determining the outcome.
Additionally, for parameters related to the post-impact rotation, the
pre-impact rotational states of the target and projectile are also
important

escape velocity. Previous studies have considered much
lower asymptotic relative velocities—indeed, they sampled
lower impact velocities—than we have in this work. The
high velocities considered in this work might seem exces-
sive, but such velocities are needed to capture the low-
probability collisions that can occur during planet forma-
tion. Indeed, recent studies have shown that it’s possible
for planetary-sized objects to be exchanged between stars
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Figure 14 SHAP values for a selected subset of post-impact parameteres. The SHAP values are a useful metric for explaining how data-driven models
classify or predict collision outcomes. On the x-axis, the SHAP value quantifies the magnitude of the contribution by each pre-impact quantity.
Negative SHAP values push the value of the post-impact parameter lower, whereas positive SHAP values push the value higher. The normalized
value of the pre-impact parameter (ordered along the y-axis) is indicated by color, with bluer values indicating lower pre-impact parameter values
and higher values red

in a crowded stellar environment, leaving those objects
on highly-eccentric orbits that could result in a collision
(Hands et al. 2019). These velocities would be extremely
fast and the ensuing collisions catastrophic.

5.2 Feature importance
The data-driven models investigated here provide insight
into the physical relationships between pre- and post-
impact properties. While ML methods are often criticized
for being so-called “black boxes”, advances in model inter-

pretability have made data-driven methods powerful tools
for understanding complex relationships. The Sobol’ in-
dices shown in Fig. 13, the PCE feature selections reported
in Table 7, and the SHAP values provided in Fig. 14 illus-
trate clearly the relationships between the pre- and post-
impact properties.

In general, both the Sobol’ indices and SHAP values in-
dicate that the most important pre-impact properties are
those related to the geometry and energy of the impact.
These properties are the mass ratio (γ ), asymptotic rela-
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Table 7 Features selected by PCE. For each post-impact property,
the PCE algorithm selects a subset of features to use in the model.
For most post-impact parameters, the algorithm selects
pre-impact parameters related to the impact geometry (γ , b∞ ,
v∞). Where other pre-impact properties have been selected, they
tend to have a physically intuitive relationship to the post-impact
property. Note that PCE did not select the pre-impact azimuthal
orientations, φtarg and φproj , indicating that these properties
generally do not play a role in determining collision outcomes

Parameter Features selected

MLR Mtot , γ , b∞ , v∞
Mnorm

LR γ , b∞ , v∞
Fcore

LR γ , b∞ , v∞ , Fcore
targ , F

core
proj

JLR Mtot , γ , b∞ , v∞ , �targ , θtarg

�LR γ , b∞ , v∞ , �targ , θtarg , Fcore
targ

θLR γ , b∞ , v∞ , �targ , θtarg

Fcond
LR γ , b∞ , v∞

δmix
LR γ , b∞ , v∞

MSLR Mtot , γ , b∞ , v∞
Mnorm

SLR γ , b∞ , v∞
Fcore

SLR γ , b∞ , v∞ , Fcore
targ , F

core
proj

JSLR Mtot , γ , b∞ , v∞
�SLR γ , b∞ , v∞ , �proj , Fcore

proj
θSLR γ , b∞ , v∞ , θtarg , Fcore

targ , �proj , θproj , Fcore
proj

Fcond
SLR b∞ , v∞ , �targ , Fcore

proj
δmix

SLR b∞ , v∞

Mdeb Mtot , b∞ , v∞
Mnorm

deb b∞ , v∞
FFe

deb b∞ , v∞ , Fcore
targ , F

core
proj

δmix
deb γ , b∞ , v∞ , Fcore

targ , F
core
proj

θ̄deb γ , v∞ , �targ , θtarg , Fcore
targ , θproj

θ stdev
deb Mtot , γ , b∞ , v∞

φ̄deb γ , b∞ , v∞
φstdev

deb γ , b∞ , v∞ , Fcore
targ , F

core
proj

tive velocity (v∞), and asymptotic impact parameter (b∞).
For rotational quantities (J , �, and θ ), the pre-impact rota-
tional state of the associated body—target for the LR and
projectile for the SLR—also play a significant role.

The Sobol’ analysis, along with the results of the PCE
feature selection and SHAP values for the core mass frac-
tions, also explain why the analytic PIM method does so
well at predicting Fcore

LR . In addition to the impact geometry,
the feature importance metrics all indicate that the core
mass fractions of the target (Fcore

targ ) and projectile (Fcore
proj )

are crucial in determining the Fcore
LR . This would add fur-

ther weight to the idea that, with the exception of hit-and-
run collisions, the cores of the target and projectile tend to
merge.

The Sobol’ analysis, associated PCE feature selections,
and SHAP values pointedly show that the pre-impact az-
imuthal orientations (φtarg, φproj) play an insignificant role
in determining the outcome the post-impact properties.

While this would suggest that these parameters can be ig-
nored in future studies (in order to reduce the number of
pre-impact parameters), it would be prudent to first assess
their contributions to post-impact properties not consid-
ered here, as well as in higher fidelity simulations.

5.3 Ease of implementation
The data-driven models developed and evaluated in this
work operate by fundamentally distinct underlying
methodologies, both from a mathematical and algorith-
mic point of view. Therefore, an important consideration
of these models going forward is their complexity and rela-
tive ease of implementation into existing or future N-body
codes. There are a number of considerations that need to
be taken into account regarding practical development and
use of the models. First, what are the dataset requirements?
Second, what are the computational resources required to
train the models? And third, what are the limitations when
integrating the model into an existing N-body integrator,
both in terms of speed and complexity?

Most of the improvement in performance relative to
training set size is achieved up to sizes of roughly a thou-
sand, with marginal increases thereafter (Fig. 12). The re-
sults would therefore suggest that datasets of approxi-
mately a few thousand simulations would be suitable for
most post-impact properties, such as masses or core mass
fractions. For other, more difficult-to-emulate post-impact
properties, such as θSLR, larger dataset sizes are advisable.
The datasets should additionally be large enough to allow
for robust training and validation practices, such as the
HPO with k-fold cross-validation used in this work.

While Fig. 12 shows that the dataset requirements are
similar for the data-driven models, the computational re-
sources needed to train, optimize, and validate them are
not. We have avoided an explicit comparison between
training times and memory requirements, on one hand
because the models only have to be trained once and, on
the other hand, because not all models were trained on
the same hardware, rendering a fair comparison problem-
atic. However, the qualitative differences between meth-
ods is worth mentioning. As training set sizes increase,
the time required to train, optimize, and validate the mod-
els increases. The times required to train and optimize the
MLP, PCE, and XGB models are negligible for the datasets
investigated here, whereas the times required to train the
GP models grow quickly. The GP models lack of scalabil-
ity quickly became a problem and we were consequently
unable to perform HPO on GP models above N = 1000.
Therefore, on account of both its poor performance rela-
tive to the other data-driven methods and its poor scalabil-
ity, we conclude that GPs are not well suited to the problem
at hand, especially given that training set sizes are expected
to continue growing.

In terms of accessibility, neural networks (such as MLPs)
and XGBoost are both extremely popular ML methods
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and as a result many implementations from Python into
other languages are readily available. Likewise, PCEs have
already been used in other astrophysical applications to
great success (Knabenhans et al. 2019). In order to utilize
these models in an N-body integrator, a way to store their
architecture, hyperparameters, and coefficients, weights,
and/or biases is required. These parameters must be read-
ily accessible by the integrator, and therefore speed and
memory requirements must be considered. For example,
while the matrices containing the weights and biases of
neural networks can grow very large, the MLPs investi-
gated here are relatively small networks, with no more than
three hidden layers with up to at most 24 neurons each.
Therefore, the associated weights and biases matrices are
negligibly small and can be used without issue in exist-
ing N-body codes. Given the excellent performance of the
MLP models here, it is unlikely that the number of layers
or neurons per layer will grow significantly in the future.

We provide all of the models reported in this study
as serialized joblib files at https://github.com/mtimpe/
aegis-emulator.

5.4 Future work
The data-driven emulation strategies explored here have
proven to be extremely flexible and robust. This sug-
gests that the greatest benefit to collision models and sub-
sequent emulation-based N-body simulations will come
from improvements to the datasets used to train the mod-
els. The most obvious improvements are needed in the
underlying simulation methods (e.g., smoothed-particle
hydrodynamics). Higher resolution simulations, improve-
ments to the underlying CFD algorithms, as well as im-
proved and additional equations of state are the obvious
improvements in this respect.

In particular, both the classification and regression mod-
els tend to see their worst performance at the interface be-
tween collision outcome regimes (e.g., merging versus hit-
and-run). Therefore, datasets intended to be used as train-
ing data for data-driven models should focus on these re-
gions.

An important caveat that bears repeating in all ma-
chine learning applications is that data-driven methods
will faithfully emulate the data they are given. Therefore,
the accuracy of the underlying numerical methods and
distributions of the input features are critical considera-
tions. Unfortunately, there is as of yet no comprehensive
study for planetary collisions comparing the results of dif-
ferent CFD methods (e.g., AMR, SPH) or implementations
of those methods in the literature. Therefore, while data-
driven techniques may achieve excellent accuracies, their
performance does not give any information as to the accu-
racy of the underlying simulations. Thus, a comprehensive
code comparison for planetary collision codes would be of
great benefit to the community.

We have not attempted to impose any physical limita-
tions on our data-driven models in this work. Thus, while
the predictions of the models may be accurate, they may
not be physically self-consistent. In the context of N-body
studies, the conservation of mass and momentum is of
particular importance and therefore a robust method is
needed to ensure the physical self-consistency of the mod-
els. In a forthcoming paper, we explore strategies for em-
ulating physically conserved quantities, such as mass and
angular momentum. Multi-target regression models may
prove useful for imposing physical self-consistency on the
models, which at present must be achieved entirely ex post.

In addition, ML and UQ are rapidly advancing fields and
are used in a wide range of applications. More advanced
techniques (e.g., ensemble learning) are therefore likely to
prove useful in the future. Such techniques were beyond
the scope of this paper, but the models investigated here
may benefit from them significantly.

6 Conclusions
Using a new set of 14,856 SPH simulations of collisions
between differentiated, rotating planets, we have demon-
strated that data-driven methods from machine learn-
ing (eXtreme Gradient Boosting and multi-layer percep-
trons) and uncertainty quantification (Gaussian processes
and polynomial chaos expansion) can accurately pre-
dict the outcome of a wide range of post-impact proper-
ties. Of these data-driven models, multi-layer perceptrons
and XGBoost models consistently achieved the best per-
formances. We additionally showed that extant analytic
(perfect merging) and semi-analytic methods (IEM and
EDACM) perform poorly compared to data-driven meth-
ods when effects such as variable core mass fractions and
pre-impact rotation are included.

In terms of training dataset requirements, the best per-
formances are reached around a few thousand collisions,
however some parameters continue to show improvement,
suggesting that larger training datasets will be useful in
the future. Particular attention should be paid to the pre-
impact parameter space near transitions between outcome
regimes (e.g., merging and hit-and-run), as this is where
data-driven models perform worst.

We have leveraged Sobol’ indices from polynomial chaos
expansion (PCE) and SHAP values from XGboost (XGB)
in order to quantify relationships between pre- and post-
impact quantities. These metrics reveal that the impact ge-
ometry is usually the most important factor in predicting
most post-impact properties, however in some cases other
pre-impact properties are important.

We summarize the several notable conclusions here:
• Data-driven classification methods, including

multi-layer perceptrons (MLPs) and XGBoost models
(XGB) are able to accurately classify collision
outcomes to approximately 95% accuracy. The

https://github.com/mtimpe/aegis-emulator
https://github.com/mtimpe/aegis-emulator
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misclassified collisions are concentrated at the
transitions between collision outcome regimes (e.g.,
merging to hit-and-run).

• Data-driven regression methods can achieve high
accuracy for a wide range of post-impact properties.
Of the data-driven methods considered here,
multi-layer perceptrons (MLPs), polynomial chaos
expansion (PCE), and XGBoost (XGB) perform best.
Gaussian processes (GPs) perform significantly worse
and do not scale to the dataset sizes considered here.

• Data-driven methods are able to generalize to any
quantifiable post-impact parameter. Extant analytic
and semi-analytic methods are limited to a narrow
range of post-impact properties and achieve far lower
accuracy.

• Further improvements to collision emulation should
focus on the underlying training data. In particular,
better sampling of the transition regimes is needed.
The numerical convergence of the simulations that
comprise the training data also needs further analysis.

Appendix A: Definitions
Pre-impact trajectory In this work we use the asymp-
totic relative velocity (v∞) and asymptotic impact parame-
ter (b∞) to specify the initial trajectory of the projectile in
the target’s frame of reference. Most previous studies have
used the associated quantities at the moment of impact—
bimp and vimp, respectively. Therefore, we provide formulae
for converting quickly between the two. These conversions
can be derived from the conservation of energy and angu-
lar momentum. We first calculate vimp from v∞,

v2
imp = v2

∞ +
2GMtarg

Rcrit
, (10)

where G is the gravitational constant, Mtarg is the mass of
the target, and Rcrit = Rtarg + Rproj (using the non-rotating
radii of the bodies). The impact parameter (bimp) can then
be obtained via,

bimp = b∞
v∞
vimp

. (11)

Note that this conversion assumes that the target and
projectile are perfectly rigid bodies, which is not the case
in either reality or in CFD simulations. Therefore, the con-
version is an approximation, because the shapes, rotation
rates, and orientations of the target and projectile, as well
as their pre-impact trajectories, will be altered by gravita-
tional interactions prior to impact.

Accretion efficiency The accretion efficiency, ξ , quanti-
fies how much of the projectile was accreted onto the tar-

get (referred to as the largest remnant (LR) post-impact),

ξ =
MLR – Mtarg

Mproj
. (12)

However, if the collision is sufficiently disruptive, the ac-
cretion efficiency can take on negative values. The mini-
mum accretion efficiency is set by –1/γ .

Iron content The core mass fraction (Fcore
body) is a measure

of the iron in either the target, projectile, LR, or SLR, rel-
ative to the body’s total mass. In the simulations investi-
gated here, the SPH particles that comprise the pre-impact
bodies are either iron or granite. Thus, it is straightforward
to calculate the iron (i.e., core) mass fraction,

Fcore
body =

Niron

Ngran + Niron
, (13)

where Ngran and Niron are the number of granite and iron
particles, respectively. Similarly, while the debris doesn’t
have a core, it’s iron mass fraction (FFe

deb) is calculated in
the same manner.

Melt fraction The melt fraction (Fmelt
body) is the fraction of

the post-impact material that is in a non-condensed state,
as defined by the Tillotson EOS. This is useful for esti-
mating the depth of the post-impact magma ocean. Note
that the Tillotson EOS doesn’t allow for mixed states, so
this quantity should be be used with caution and only as a
rough estimate of the post-impact melt fraction. Our mo-
tivation for including it here was to show that data-driven
emulation can be extended to parameters which have not
been considered before. Improvements to the EOS in fu-
ture datasets will improve the usefulness of quantities such
as this.

Mixing ratio The mixing ratio (δmix
body) in this study is de-

fined as the fraction of “foreign” material present in the LR,
SLR, or debris. While this gives no information about the
source of the foreign material (i.e., whether foreign refers
to the target or projectile), it is easier to regress because it
does not suffer from the non-negligible number of hit-and-
run collisions in which the projectile becomes the LR and
the target the SLR. These cases create a significant discon-
tinuity in the response surface, which makes it difficult to
regress. However, coupled with a classifier that identifies
the dominant material source, the mixing ratio is a power-
ful tool for studying compositional exchange during colli-
sions.

Debris field spatial distribution The mean and standard
deviations of the debris altitude (θ ) and azimuth (φ) are
a way to quantify the direction and spread of the post-
impact debris field. The altitude of the debris particles are
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measured relative to the initial collision plane and the az-
imuths are measure relative to an arbitrary reference di-
rection within the collision plane. Here, the azimuths are
measured relative to the initial velocity vector of the pro-
jectile in the reference frame of the target.

Appendix B: Perfectly Inelastic Merging (PIM)
Perfectly inelastic merging (PIM) assumes perfect conser-
vation of mass and momentum, allowing a set of simple
analytic formulae to be derived. The formulae predict the
mass and core mass fraction of the largest (and only) rem-
nant (referred to as the LR for consistency). During the col-
lision, there is no net conversion of kinetic energy to other
forms such as heat, noise, or thermal energy. Mass is con-
served in the only remant, such that

MLR = Mtarg + Mproj, (14)

where Mtarg and Mproj are the masses of the target and pro-
jectile, respectively.

We can similarly calculate the core mass fraction of the
LR by noting that, in a perfect merger, the cores of the tar-
get and projectile will be incorporated in their entirety into
the LR,

Fcore
LR =

Fcore
targ Mtarg + Fcore

proj Mproj

Mtarg + Mproj
, (15)

where Fcore
targ and Fcore

proj are the core mass fractions of the tar-
get and projectile, respectively.

PIM can also predict the rotational angular momentum,
rotation rate, and obliquity of the LR. The rotation model
assumes perfect angular momentum conservation and as-
sumes that the orbital angular momentum of the collision
remains with the post-impact remnant. The angular mo-
mentum in the system is determined by the rotational an-
gular momenta of the target and projectile and the orbital
angular momentum of the pre-impact trajectory,

�JLR = �Jtarg + �Jproj + Jorb
�̂k, (16)

where Jorb = Mprojb∞v∞ is the orbital angular momentum
delivered by the impact. The obliquity of the remnant (θLR)
is subsequently measured relative to the unit vector nor-
mal to the collision plane (ẑ = [0, 0, 1]). The rotation rate of
the remnant can be calculated from the magnitude of the
angular momentum vector,

�LR =
| �JLR|
ILR

, (17)

where ILR is the moment of inertia of the LR. Because the
bodies themselves are not physically resolved in PIM, the

moment of inertia of the LR must be analytically approxi-
mated (and in turn the radius),

ILR =
2
5

MLRR2
LR, RLR =

(
3MLR

4πρLR

)1/3

, (18)

where ρLR = ρgran(1 – Fcore
LR ) + ρironFcore

LR . The density of iron
is ρiron = 7.86 g/cm3 and ρgran = 2.7 g/cm3 is the density of
granite.

Appendix C: Leinhardt and Stewart (2012)
(EDACM)

EDACM as introduced by Leinhardt and Stewart (2012;
hereafter LS12) is a set of analytic relations defined for
multiple distinct (non-overlapping) collision regimes.
These collision regimes are delineated by a combination
of bimp, vimp, QR, and Q′�

RD. Here, bimp and vimp are the im-
pact parameter and velocity at the moment of impact, QR
is the specific impact energy, and Q′�

RD is the catastrophic
disruption threshold.

We have followed the implementation of EDACM as
provided in LS12 for the LR and SLR properties, and its
subsequent N-body implementation (Chambers 2013) for
the debris properties. LS12 provides a step-by-step proce-
dure for calculating Q′�

RD, the projectile’s interacting mass
Minteract, and the velocities for the onset of erosion verosion
and super-catastrophic disruption (SCD) vscd, which are
used below. These calculations are beyond the scope of
this appendix, but we direct the reader to Appendix A of
LS12 as a reference. Here, we provide a brief overview of
EDACM and point out where our implementation differs.

Perfect merging In EDACM, The mutual escape velocity
is calculated using the interacting mass in the collision,

v′
esc =

√
2GM′

R′ , R′ =
(

3M′

4πρ1

)1/3

, (19)

where M′ = Mtarg + Minteract and Minteract is the interact-
ing mass of the projectile. ρ1 = 1 g/cm3 is an assumed
bulk density (see Table 8) of the bodies. This bulk den-
sity is low for planetary-scale bodies, but we use it here
for consistency with previous implementations (Leinhardt
and Stewart 2012; Chambers 2013). If the impact velocity
is less than the escape velocity (vimp < v′

esc), then the out-
come is assumed to be a perfect merger and EDACM is
therefore equivalent to PIM in this regime,

Mnorm
LR = 1. (20)

Disruption and accretion regimes For impact velocities
exceeding the escape velocity (vimp ≥ v′

esc), collisions are
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Table 8 Summary of variables used in EDACM and the values
used in our implementation. All values are those suggested in
LS12. However, we note that our determination of the
target/projectile radii and bulk densities are different, having
been calculated for differentiated bodies

Parameter Value Description

ρ1 1 g/cm3 Assumed bulk density
η –1.5 Exponent of the power-law fragment

distribution in the SCD regime
c� 1.9 Head-on equal-mass disruption energy in units

of specific gravitational binding energy
μ̄ 0.36 Velocity exponent in coupling parameter
β 2.85 Slope of fragment size distribution
NLR 1 Disruption (γ ≤ 0.95)
NSLR 2 Disruption (γ ≤ 0.95)
NLR 2 Hit & run (γ > 0.95)
NSLR 4 Hit & run (γ > 0.95)

further broken up into grazing (bimp > bcrit) and non-
grazing (bimp < bcrit),

bcrit =
Rtarg

Rtarg + Rproj
, (21)

where Rtarg and Rproj are the radii of the target and pro-
jectile, respectively. The radii are determined via the bulk
densities,

Rbody =
(

3Mbody

4πρbody

)1/3

. (22)

Here, we differ from LS12 in that we are using differen-
tiated bodies, and therefore we calculate the bulk density
of our bodies as,

ρbody = ρgran
(
1 – Fcore

body
)

+ ρironFcore
body, (23)

where the density of iron is ρiron = 7.86 g/cm3 and ρgran =
2.7 g/cm3 is the density of granite.

For non-grazing impacts, where v′
esc < vimp < vscd, the im-

pact is in either the disruption or partial accretion regime.
In these regimes, a universal law for Mnorm

LR applies,

Mnorm
LR = 1 – 0.5

QR

Q′�
RD

. (24)

Hit & run regime Grazing collisions (bimp > bcrit) where
v′

esc < vimp < verosion are defined as hit & run collisions. In
this regime, MLR is again calculated by the universal law
(Eq. (24)). If, in the resulting prediction, MLR < Mtarg, then
the outcome is a single large remnant (i.e., the LR) and de-
bris. However, if MLR ≥ Mtarg, then the LR is assumed to be
the original target (MLR = Mtarg) and the SLR is calculated
assuming the “reverse collision” scenario. This scenario is

described in detail in LS12, and the resulting relation used
to predict Mnorm

SLR is,

Mnorm
SLR =

(3 – β)(1 – NLRMnorm
LR )

NSLRβ
, (25)

where β = 2.85, NLR = 1, NSLR = 2, and Mnorm
LR is deter-

mined by the universal law (Eq. (24)). This relation needs
to be modified slightly for nearly equal-mass (γ ∼ 1) hit &
run collisions. We modify the relation according Leinhardt
and Stewart (2012) when γ > 0.95.

Super-catastrophic disruption regime For all impact an-
gles/parameters, a collision is in the SCD regime if vimp >
vscd. In this regime, Mnorm

LR is determined using a power-law
relation,

Mnorm
LR =

0.1
1.8η

(
QR

Q′�
RD

)η

, (26)

where η = –1.5.

Debris Following the EDACM implementation for the
N-body integrator Mercury (Chambers 2013), the mass
not allocated to the LR (in the case of non-hit-and-run
collisions) is split into one or more equal-mass fragments,
where the masses are as close as possible to, but always
more massive than, Mfrag = 4.7 × 10–3 M⊕. This limit was
set by the computational limits of the Mercury integra-
tor at the time of the study. With the LR acting as the cen-
ter of mass, the trajectories of the resulting fragments are
arranged at uniform intervals around a circle lying in the
collision plane. This results in the a mean altitude of the de-
bris fragments θ̄deb of 0 degrees with a standard deviation
θ stdev

deb of 0 degrees. The mean azimuth of the fragments φ̄deb
is 180 degrees. The standard deviation of the debris frag-
ments φstdev

deb is that of a uniform distribution from 0–360,
which is 103.9 degrees in this case.

Mantle stripping EDACM predicts the core mass frac-
tions of its remnants by using a mantle-stripping prescrip-
tion introduced in earlier work (Marcus et al. 2010). This
prescription is based on simulations of collisions in which
the colliding bodies have chondritic compositions (i.e.,
Fcore

targ = Fcore
proj = 0.33).

Appendix D: Polynomial Chaos Expansion (PCE)
PCE is a probabilistic method whereby the model output is
projected on a basis of orthogonal stochastic polynomials
in the random inputs. The stochastic projection provides a
compact and convenient representation of the model out-
put variability with regards to the inputs. In this work,
PCEs are used to represent the relationships between the
pre- and post-impact parameters of the collisions. The
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PCE coefficients are obtained from a non-intrusive regres-
sion based method. PCE represents the post-impact pa-
rameters by a series expansion,

ŷ =
+∞∑

α∈NM

yα�α(�x), (27)

where ŷ is the predicted post-impact value, yα are the co-
efficients to be calculated and �α are the multivariate or-
thonormal basis functions. Orthonormality for PCE ba-
sis functions is always defined with respect to a weighting
function given by the joint probability distribution fX(�x) of
the sampled input features,

〈
�n(�x),�m(�x)

〉 ≡
∫

DX

�n(�x)�m(�x)fX(�x) dxd

= δnm, (28)

where DX is the full input space and d is its dimensionality
and δnm is the Kronecker delta. In our case, this input dis-
tribution is chosen to be uniform in all d = 12 dimensions
(classic LHS; see Sect. 2.1.2) as we do not want to impose
any non-trivial priors on the collisional input parameters.
Following Xiu and Karniadakis (2002), in this work all the
basis functions hence need to be based on Legendre poly-
nomials,

P0(x) = 1, (29)

P1(x) = x, (30)

(n + 1)Pn+1(x) = (2n + 1)xPn(x) – nPn–1(x), (31)

where n is the polynomial order and the norm of the nth
Legendre polynomial is,

‖Pn‖2 =
1

2n + 1
, (32)

with which we can define the normalized Legendre poly-
nomials,

P̃n(x) =
√

2n + 1Pn(x). (33)

In order to construct the multivariate basis functions
from the univariate Legendre polynomials, we calculate
the tensor product,

�n(�x) ≡
12∏

i=1

Pi
ni

(xi). (34)

The Legendre polynomials are further defined over the
interval [–1, 1]. This is why all input features need to be
linearly mapped into a 12D unit hypercube before they can
be passed into the individual Legendre polynomials.

Truncation of the polynomial basis The most straightfor-
ward way of truncating a PCE is via a maximal polynomial
order. Note that this means that the total polynomial or-
der may not exceed this maximum. The subscript α is a
multi-index specifying uniquely how a basis function of
order n is composed by individual Legendre polynomials:
The first entry in the multi-index is given by the order of
the first factor in (34), the second index refers to the order
of the second factor and so on. The sum of all entries in the
multi-index may thus never be larger than the maximum
polynomial order.

Expansion coefficients The goal of PCE regression is to
determine the coefficients yα of the expansion, truncated
at some polynomial order, given a training data. In PCE
the underlying model is assumed to take a random variable
as input and, as a consequence, the output of the model
has to be treated as a random variable as well. In fact, PCE
maps probability distributions of input features to proba-
bility distributions of output. Because PCE belongs to the
class of spectral decomposition methods, its expansion co-
efficients decrease polynomially, leading to favorable con-
vergence properties. As it turns out, sometimes the predic-
tion performance can be improved if only carefully chosen
terms remain in the expansion while others are left out.
There are two more hyperparameters in this approach that
further reduce the number of terms kept in the expansion.
The expansion coefficients, moreover, contain information
about the global output uncertainty given the uncertain in-
put features. This latter property of PCE allows us to quan-
tify feature importance via the Sobol’ indices. The OLS al-
gorithm is used to compute the coefficients in the polyno-
mial chaos expansion.

In this work The PCE regression models in this work are
constructed as follows: first, for any given target, a compu-
tationally cheap version of PCE based on an ordinary least
squares (OLS) loss function is computed. This allows us
to quantify which features are relevant for the current tar-
get via Sobol’ analysis (see Sect. 3.7). We only retain those
features with a total Sobol’ index larger than 1% (as other-
wise the next step would be computationally too demand-
ing). Based on this reduced set of features the PCE is then
computed a second time. This time the PCE is obtained
by minimization of a least squares loss function which is
augmented by a penalty term through which a sparse rep-
resentation of the final emulator is enforced. The loss func-
tion is minimized with the least-angle regression (LAR) al-
gorithm (Efron et al. 2004). For an in-depth introduction
to PCE, we refer the reader to Knabenhans et al. (2019) and
references therein.

Appendix E: Gaussian Processes (GP)
GPs are a non-parametric method that finds a distribution
over the possible functions f (x) that are consistent with the
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observed data (Rasmussen and Williams 2005). They are
stochastic processes, such that every finite collection of its
random variables has a multivariate normal distribution.
The distribution of a GP is the joint distribution of all of its
random variables. The function to be modeled is therefore
represented as a stochastic process f (i.e., a collection of
random variables indexed by some variable x ∈X ),

f = f (x) : x ∈X , (35)

where we approximate f with a GP. GPs define a distri-
bution over the function’s values at a finite, but arbitrary,
set of points (x1, . . . , xN ), assuming that p(f (x1), . . . , f (xN ))
is jointly Gaussian, with a mean μ(x) and covariance σ (x)
given by σij = k(xi, xj), where k is a positive definite kernel
function. The key idea is that if xi and xj are deemed by
the kernel to be similar, then it expects the output of the
function at those points to be similar too.

In regression problems, we are interested in predicting
the value yi of f (x) at a specific points xi. In the general
case, observations are noisy, which means that we observe,

yi = f (xi) + ε, (36)

where ε is assumed to be independent and identically dis-
tributed Gaussian noise with variance σ 2

n . The prior on the
noisy observation becomes

cov(yi, yj) = k(xi, xj) + σ 2
n δij, (37)

where k(xi, xj) is the kernel and δij is the Kronecker delta
function. Typically, the value of the prediction for some in-
put xi is given by the mean of f at xi.

Kernel function Machine learning algorithms that in-
volve a GP use kernel functions to measure similarity be-
tween points and predict the value of an unseen point from
training data. The prediction is an estimate for the unseen
point based on the kernel function. The Gaussian radial
basis function (RBF) kernel is commonly used, however in
this work we test multiple kernels, including the constant,
Matérn (ν = 3/2), rational quadratic, and RBF kernels (see
Table 4).

In this work, we use scikit-learn’s open-source im-
plementation of GPs. The hyperparameters of the kernel
are optimized during fitting of the GP by maximizing the
log-marginal-likelihood (LML) based on the chosen op-
timizer (we use scikit-learn’s default optimizer). As
the LML may have multiple local optima, the optimizer
is started repeatedly by specifying the number of restarts.
The noise level in the targets is specified by α and can be
helpful for dealing with numerical issues during fitting. We
test models without noise and with α = 10–2.

Appendix F: eXtreme Gradient Boosting (XGB)
XGBoost (XGB) is a scalable, open source machine learn-
ing algorithm for tree boosting (Chen and Guestrin 2016).
For a given dataset with n examples and d features, a tree
ensemble model uses K additive functions to predict the
output,

ŷi = φ(�xi) =
K∑

k=1

fk(�xi), fk ∈F , (38)

where ŷi is the predicted output value for a given set of in-
put features �xi,F is the function space of all possible classi-
fication and regression trees (CART). Each fk corresponds
to an independent tree structure q with leaf weights w. To
learn the set of functions used in the model, XGB mini-
mizes the following regularized objective function,

L(φ) =
∑

i

l(ŷi, yi) +
∑

k

�(fk), (39)

where l is a differentiable convex loss function that mea-
sures the difference between the prediction ŷi and the tar-
get yi. XGB’s default loss function for regression, which we
use in this work, is the squared error, l = (ŷi – yi)2. The
second term � is a regularization term that penalizes the
complexity of the model, which helps to avoid over-fitting.

XGB is a decision-tree-based ensemble machine learn-
ing algorithm that uses a gradient boosting framework
(Chen and Guestrin 2016). Gradient tree boosting consid-
ers a function h(x; �am), which is a small regression tree,

f (�x; {βm, �am}M
1 ) =

M∑

m=1

βmh(x; �am), (40)

where the parameters �am are the splitting variables (i.e., on
which input feature does the node make the split), split lo-
cations (i.e., in what location or value of the input variable
to make the split) and number of terminal nodes, which
we fix to be L. In this work, the splitting variables are the
pre-impact parameters in Table 1.

During training, at each iteration m, a regression tree
partitions the x–(input) space into L-disjoint regions
{Rl,m}L

l=1 and predicts a separate constant value in each one.
For some input �x, the output of the weak learner can be
written as

h
(�x; {Rl,m}L

1
)

=
L∑

l=1

ȳl,m1(�x ∈ Rl,m), (41)

where ȳlm is the value predicted in region Rlm. The model
f (�x) is updated, at each iteration m, as

fm(�x) = fm–1(�x) + βmh(�x; �am), (42)
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where the coefficients βm and the parameters �am are jointly
obtained by minimizing

(βm, �am) = arg min
�a,β

N∑

i=1

[
ỹi – βh(�xi; �a)

]2, (43)

where the residuals are given by

ỹi = –
[

∂

∂fm–1(xi)
�

(
yi, fm–1(�xi)

)
]

, i = 1, N (44)

and an arbitrary, differentiable loss function �(y, f (�x)).
This loss function could be, for example, mean squared
error loss, or Huber loss. A more efficient algorithm is pre-
sented in Chen and Guestrin (2016), in which the search
for best split is not achieved through an exact greedy al-
gorithm (which requires to search for all possible splits
on all features), but rather by an approximate algorithm,
which proposes candidate splitting points according to
percentiles of feature distribution.

In the XGB models used in this work, we use squared
error as the loss function, a learning rate of ν = 0.1, and a
L1 regularization term on the weights of α = 10.

Appendix G: Multi-Layer Perceptrons (MLP)
Multi-layer perceptrons (MLP) are a type of deep, feed-
forward, artificial neural network that consist of three or
more layers (Rumelhart et al. 1986). These layers include
an input layer, output layer, and one or more hidden layers.
Each of these layers is composed of a variable number of
nodes (also called neurons). The layers in a MLP are fully
connected, such that each node in one layer connects—
with a certain weight, wij—to every node in the follow-
ing layer. With the exception of the input layer, the nodes
are wrapped in non-linear functions known as activation
functions to regularize their output. The resulting network
is a supervised learning algorithm that learns a function
f (·) : Rd �→ Ro by training on a dataset, where d is the num-
ber of input dimensions and o is the number of output di-
mensions. Given a set of features �x = x1, x2, . . . , xd and a
corresponding target y (in the case of single-target mod-
els), it can learn a non-linear function approximator for
either classification or regression. In this work, we train
MLPs to learn a mapping from a 12-dimensional input
space (the pre-impact parameters in Table 1) to a scalar
output space (i.e., one of the post-impact parameters in Ta-
ble 3) The resulting regression models are then non-linear
functions that map f (�x) : R12 �→ R1.

While the input nodes provide the inputs, the hidden
layers are the computational workhorse of the network.
The output of a node in a hidden layer can be represented

as,

y = ψ

( N∑

i=1

wixi + bi

)

, (45)

where ψ is the activation function and wi and bi are the
weights and biases of the ith layer, respectively. MLPs
learn by changing these weights and biases with each new
piece of data they see. The magnitude and direction of the
changes are based on the difference between the output
value and expected result. In order to quantify the degree
of error in the output node, a loss function L is defined,

L(y) =
1
N

N∑

i=1

(ŷi – yi)2, (46)

where y is the expected (i.e., training) value and ŷ is the
value predicted by the network. This particular loss func-
tion is the mean squared error (MSE). Note that the MSE is
the loss function used to determine the weights and biases
of the network, but the validation metric used to evalu-
ate the performance of the trained model is the r2-score
(see Sect. 3.6). Finding the minimum of the loss function,
which is itself a composition of many non-linear functions,
is generally impossible analytically. Thus, in order to find
the minimum of the loss function, we use a stochastic gra-
dient descent algorithm (Snyman 2005).

The MLPs used in this work consist of an input layer with
12 nodes, one to three hidden layers with up to 24 nodes
each, and an output layer with a single node (i.e., a scalar
output). All activation functions in the resulting network
are the Rectified Linear Unit (ReLU). The ReLU activation
function is linear for all positive values, and zero for all
negative values, such that y = max(0, x). For an in-depth
introduction to MLPs and the algorithms used here, we
direct the reader to the following general comprehensive
introduction of neural networks (Goodfellow et al. 2016).
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