Abbott, T.M.C., Abdalla, F.B., Alarcon, A., Aleksić, J., Allam, S., Allen, S., Amara, A., Annis, J., Asorey, J., Avila, S., et al.: Dark Energy Survey year 1 results: cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. E **98**(4), 043526 (2018)

Google Scholar

Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds (2018)

Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)

Google Scholar

Barreira, A., Nelson, D., Pillepich, A., Springel, V., Schmidt, F., Pakmor, R., Hernquist, L., Vogelsberger, M.: Separate Universe Simulations with IllustrisTNG: baryonic effects on power spectrum responses and higher-order statistics. Mon. Not. R. Astron. Soc. **488**, 2079–2092 (2019). arXiv:1904.02070. https://doi.org/10.1093/mnras/stz1807

Article
ADS
Google Scholar

Bond, J.R., Kofman, L., Pogosyan, D.: How filaments of galaxies are woven into the cosmic web (1996)

Borji, A.: Pros and cons of gan evaluation measures. Comput. Vis. Image Underst. **179**, 41–65 (2019)

Article
Google Scholar

Boylan-Kolchin, M., Springel, V., White, S.D.M., Jenkins, A., Lemson, G.: Resolving cosmic structure formation with the Millennium-II simulation (2009)

Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis (2019)

Busha, M.T., Wechsler, R.H., Becker, M.R., Erickson, B., Evrard, A.E.: Catalog production for the DES Blind Cosmology Challenge (2013)

Chang, C., Pujol, A., Mawdsley, B., Bacon, D., Elvin-Poole, J., Melchior, P., Kovács, A., Jain, B., Leistedt, B., Giannantonio, T.: Dark Energy Survey Year 1 results: curved-sky weak lensing mass map. Mon. Not. R. Astron. Soc. **475**(3), 3165–3190 (2018). arXiv:1708.01535. https://doi.org/10.1093/mnras/stx3363

Article
ADS
Google Scholar

Coles, P., Chiang, L.Y.: Characterizing the nonlinear growth of large-scale structure in the Universe (2000)

Article
ADS
Google Scholar

Denton, E., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a Laplacian pyramid of adversarial networks (2015)

Dietrich, J.P., Werner, N., Clowe, D., Finoguenov, A., Kitching, T., Miller, L., Simionescu, A.: A filament of dark matter between two clusters of galaxies (2012)

Dodelson, S.: Modern Cosmology (2003)

Google Scholar

Dowson, D., Landau, B.: The Fréchet distance between multivariate normal distributions. J. Multivar. Anal. **12**(3), 450–455 (1982)

Article
Google Scholar

Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

Google Scholar

Forero-Romero, J.E., Hoffman, Y., Gottlöber, S., Klypin, A., Yepes, G.: A dynamical classification of the cosmic web (2009)

Fosalba, P., Gaztañaga, E., Castander, F.J., Crocce, M.: The MICE Grand Challenge light-cone simulation—III. Galaxy lensing mocks from all-sky lensing maps (2015)

Fréchet, M.: Sur la distance de deux lois de probabilité. C. R. Hebd. Séances Acad. Sci. **244**(6), 689–692 (1957)

MATH
Google Scholar

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets (2014)

Grnarova, P., Levy, K.Y., Lucchi, A., Perraudin, N., Goodfellow, I., Hofmann, T., Krause, A.: A domain agnostic measure for monitoring and evaluating GANs. In: Advances in Neural Information Processing Systems, pp. 12069–12079 (2019)

Google Scholar

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

Google Scholar

He, S., Li, Y., Feng, Y., Ho, S., Ravanbakhsh, S., Chen, W., Póczos, B.: Learning to predict the cosmological structure formation. arXiv e-prints (2018). arXiv:1811.06533

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

Google Scholar

Hildebrandt, H., Viola, M., Heymans, C., Joudaki, S., Kuijken, K., Blake, C., Erben, T., Joachimi, B., Klaes, D., Miller, L., Morrison, C.B., Nakajima, R., Kleijn, G.V., Amon, A., Choi, A., Covone, G., de Jong, J.T.A., Dvornik, A., Conti, I.F., Grado, A., Harnois-Déraps, J., Herbonnet, R., Hoekstra, H., Köhlinger, F., McFarland, J., Mead, A., Merten, J., Napolitano, N., Peacock, J.A., Radovich, M., Schneider, P., Simon, P., Valentijn, E.A., van den Busch, J.L., van Uitert, E., Waerbeke, L.V.: KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing (2017)

Howlett, C., Manera, M., Percival, W.J.: L-PICOLA: a parallel code for fast dark matter simulation (2015)

Article
ADS
Google Scholar

Huang, H.-J., Eifler, T., Mandelbaum, R., Dodelson, S.: Modelling baryonic physics in future weak lensing surveys. Mon. Not. R. Astron. Soc. **488**(2), 1652–1678 (2019). arXiv:1809.01146. https://doi.org/10.1093/mnras/stz1714

Article
ADS
Google Scholar

Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion (2017)

Article
Google Scholar

Joudaki, S., Mead, A., Blake, C., Choi, A., de Jong, J., Erben, T., Conti, I.F., Herbonnet, R., Heymans, C., Hildebrandt, H., Hoekstra, H., Joachimi, B., Klaes, D., Köhlinger, F., Kuijken, K., McFarland, J., Miller, L., Schneider, P., Viola, M.: KiDS-450: testing extensions to the standard cosmological model (2017)

Kacprzak, T., Kirk, D., Friedrich, O., Amara, A., Refregier, A., Marian, L., Dietrich, J., Suchyta, E., Aleksić, J., Bacon, D., et al.: Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data. Mon. Not. R. Astron. Soc. **463**(4), 3653–3673 (2016)

Article
ADS
Google Scholar

Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation (2018)

Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2014)

Kodi Ramanah, D., Charnock, T., Lavaux, G.: Painting halos from 3D dark matter fields using Wasserstein mapping networks. arXiv e-prints, (2019). arXiv:1903.10524

Kuhlen, M., Vogelsberger, M., Angulo, R.: Numerical simulations of the dark universe: state of the art and the next decade. Phys. Dark Universe **1**(1–2), 50–93 (2012). arXiv:1209.5745. https://doi.org/10.1016/j.dark.2012.10.002

Article
ADS
Google Scholar

Lai, W.-S., Huang, J.-B., Ahuja, N., Yang, M.-H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)

Google Scholar

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

Google Scholar

Lučić, M., Tschannen, M., Ritter, M., Zhai, X., Bachem, O., Gelly, S.: High-fidelity image generation with fewer labels, pp. 4183–4192 (2019)

Martinet, N., Schneider, P., Hildebrandt, H., Shan, H., Asgari, M., Dietrich, J.P., Harnois-Déraps, J., Erben, T., Grado, A., Heymans, C., et al.: KiDS-450: cosmological constraints from weak-lensing peak statistics–II: inference from shear peaks using *N*-body simulations. Mon. Not. R. Astron. Soc. **474**(1), 712–730 (2017)

Article
ADS
Google Scholar

Mead, A.J., Peacock, J.A., Heymans, C., Joudaki, S., Heavens, A.F.: An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models. Mon. Not. R. Astron. Soc. **454**(2), 1958–1975 (2015). arXiv:1505.07833. https://doi.org/10.1093/mnras/stv2036

Article
ADS
Google Scholar

Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv e-prints (2014). arXiv:1411.1784

Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks (2018)

Mosser, L., Dubrule, O., Blunt, M.J.: Reconstruction of three-dimensional porous media using generative adversarial neural networks. Phys. Rev. E **96**(4), 043309 (2017)

Article
ADS
Google Scholar

Mustafa, M., Bard, D., Bhimji, W., Lukić, Z., Al-Rfou, R., Kratochvil, J.M.: CosmoGAN: creating high-fidelity weak lensing convergence maps using generative adversarial networks. Comput. Astrophys. Cosmol. **6**(1), 1 (2019). arXiv:1706.02390. https://doi.org/10.1186/s40668-019-0029-9.

Article
ADS
Google Scholar

Potter, D., Stadel, J., Teyssier, R.: PKDGRAV3: beyond trillion particle cosmological simulations for the next era of galaxy surveys (2017)

Regier, J., McAuliffe, J., Prabhat: A deep generative model for astronomical images of galaxies (2015)

Reiman, D.M., Göhre, B.E.: Deblending galaxy superpositions with branched generative adversarial networks. Mon. Not. R. Astron. Soc. **485**(2), 2617–2627 (2019). arXiv:1810.10098. https://doi.org/10.1093/mnras/stz575

Article
ADS
Google Scholar

Rodríguez, A.C., Kacprzak, T., Lucchi, A., Amara, A., Sgier, R., Fluri, J., Hofmann, T., Réfrégier, A.: Fast cosmic web simulations with generative adversarial networks. Comput. Astrophys. Cosmol. **5**(1), 4 (2018)

Article
ADS
Google Scholar

Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. In: Advances in Neural Information Processing Systems, pp. 2018–2028 (2017)

Google Scholar

Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with singular value clipping. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2830–2839 (2017)

Google Scholar

Schawinski, K., Zhang, C., Zhang, H., Fowler, L., Santhanam, G.K.: Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit (2017)

Schmalzing, J., Kerscher, M., Buchert, T.: Minkowski functionals in cosmology. In: Bonometto, S., Primack, J.R., Provenzale, A. (eds.) Dark Matter in the Universe, p. 281 (1996). arXiv:astro-ph/9508154

Google Scholar

Schneider, A., Teyssier, R., Potter, D., Stadel, J., Onions, J., Reed, D.S., Smith, R.E., Springel, V., Pearce, F.R., Scoccimarro, R.: Matter power spectrum and the challenge of percent accuracy. J. Cosmol. Astropart. Phys. **2016**(4), 047 (2016). arXiv:1503.05920. https://doi.org/10.1088/1475-7516/2016/04/047

Article
Google Scholar

Springel, V.: The cosmological simulation code GADGET-2 (2005)

Article
ADS
Google Scholar

Springel, V., White, S.D.M., Jenkins, A., Frenk, C.S., Yoshida, N., Gao, L., Navarro, J., Thacker, R., Croton, D., Helly, J., Peacock, J.A., Cole, S., Thomas, P., Couchman, H., Evrard, A., Colberg, J., Pearce, F.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature **435**, 629–636 (2005). arXiv:astro-ph/0504097. https://doi.org/10.1038/nature03597

Article
ADS
Google Scholar

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions (2014)

Teyssier, R., Pires, S., Prunet, S., Aubert, D., Pichon, C., Amara, A., Benabed, K., Colombi, S., Refregier, A., Starck, J.L.: Full-sky weak-lensing simulation with 70 billion particles (2009)

Tröster, T., Ferguson, C., Harnois-Déraps, J., McCarthy, I.G.: Painting with baryons: augmenting *N*-body simulations with gas using deep generative models. Mon. Not. R. Astron. Soc. **487**(1), 24–29 (2019). arXiv:1903.12173. https://doi.org/10.1093/mnrasl/slz075

Article
ADS
Google Scholar

van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., Kavukcuoglu, K.: Conditional image generation with PixelCNN decoders (2016)

Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances in Neural Information Processing Systems, pp. 613–621 (2016)

Google Scholar

Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Change Loy, C.: Esrgan: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

Google Scholar

Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems, pp. 82–90 (2016)

Google Scholar

Xiong, W., Luo, W., Ma, L., Liu, W., Luo, J.: Learning to generate time-lapse videos using multi-stage dynamic generative adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

Google Scholar

Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks (2017)